
 International Journal of Computations, Information and Manufacturing (IJCIM) 3(2) -2023

Software Defect Prediction Using Clustering: A Comprehensive Literature Review

Amna Batool

Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan

A R T I C L E I N F O

Keywords:
Software Defect Prediction,
Clustering, Software
Engineering

Received: Sep, 21, 2023
Accepted: Oct, 29, 2023
Published: Dec, 22, 2023

A B S T R A C T

Anticipating software defects prior to the testing phase proves advantageous for
efficient resource allocation to develop the high-quality software, a necessity for
any organization. Machine learning (ML) methodologies play a pivotal role in
addressing these issues, leading to the creation of numerous predictive models
designed to categorize software modules as either defective or non-defective.
Several obstacles hinder the analysis of software data that is defected,
encompassing issues like redundancy, correlation, irrelevant features, missing data
points, and an unbalance distribution between faulty and non-faulty classes. Both
supervised and unsupervised machine learning techniques have garnered global
attention from practitioners and researchers as viable approaches to tackle these
challenges, yielding noticeable enhancements in defect prediction accuracy. This
review paper examines clustering unsupervised machine learning technique
developed for software defect prediction spanning the years 2017 to 2023 and
covered the 15 researches.

1. INTRODUCTION
Software engineering is a branch of engineering
that produces a wide range of software products
that are reliable, effective, and efficient at their
jobs. It covers every facet of software development,
from the specification of the program to user
maintenance once it is delivered to them. This
suggests that the procedure used to produce
software and the effectiveness of its testing are the
only factors that affect the software's quality
(Mafarja, M, et al., 2023). In other words the goal of
software engineering has traditionally been to
produce high-quality software with little
resources. Regrettably, errors have the potential to
manifest at any stage of the software development
process and the utilization of software has become
intertwined with daily work routines and business
operations. The emergence of defects within
software can potentially trigger significant
economic disruptions. Hence, one of the
paramount objectives within the software industry

is the ability to anticipate software defects
beforehand. This anticipation aids in the
identification of classes and modules that are prone
to errors, subsequently necessitating modifications
or the application of diverse testing strategies. A
crucial part of the development process is the
testing phase. Improving software quality and
cutting overall costs are the two main goals of the
testing process (Thirumoorthy, K., & Britto, J. J. J.
2022). The pursuit of constructing high-quality
software places considerable emphasis on defect
prediction, as considerable time and effort are
expended on testing and debugging. The quantity
of flaws in software determines its quality. A high
defect count results in decreased customer
satisfaction, more organizational costs and
resource consumption, and delayed testing. Defect
prediction methodologies are introduced with the
intention of streamlining software testing and
debugging endeavors. By highlighting software

Contents available at the publisher website: G A F T I M . C O M

Journal homepage: https://journals.gaftim.com/index.php/ijcim/index

https://journals.gaftim.com/index.php/ijcim/index
https://doi.org/10.1016/j.joitmc.2023.100034
https://doi.org/10.1016/j.joitmc.2023.100034

A. Batool International Journal on Computations, Information and Manufacturing (IJCIM) 3(2) -2023- 58

https://doi.org/10.54489/ijcim.v3i2.283 Published by GAFTIM, https://gaftim.com

components with a higher likelihood of being
faulty, these methodologies offer guidance to
developers, assisting them in effectively
prioritizing their efforts. Undetected defects or
vulnerabilities can lead to escalating expenses,
primarily in the form of costs associated with fixing
or remediation. Employing automated tools for
static analysis offers an immediate understanding
of the root causes of these issues, simplifying the
resolution of longstanding problems. One of the
software engineering research topics that is still
being extensively studied is software defect
prediction (SDP) (Khalid, A., Badshah, G, et al.,
2023). The testing procedure is optimally
facilitated by the use of Software Fault Prediction
(SFP/ SDP). Software modules are categorized as
either defect-prone or non-defect-prone by the
defect prediction process. Software effect area
exploration commonly makes use of defect
prediction techniques such clustering (Aftab, S.,
Alanazi, S, et al., 2023) , statistical approaches,
mixed algorithms, neural network-based metrics,
black box testing, white box testing, and machine
learning. In the past, conventional methods for
defect detection included activities such as
reviews, walkthroughs, code inspections, and
testing, but defects could also be stumbled upon by
chance. If the erroneous software modules are
found before the testing stage, the cost of testing
can be greatly reduced and also the entire cost of
development can be decreased, with the assurance
of excellent quality if only those software modules
that are identified as defective are shortlisted for
testing, as testing operations demand a large
amount of resources (Bowes, D., Hall, T., & Petrić, J.
2018). It results in early fixes and, ultimately, on-
time delivery of maintainable software, satisfying
the client and fostering his trust in the
development team. Focusing on the software
modules where problems were most likely to
emerge would save a large amount of time if the
development team knew in advance which
software modules were problematic. Additionally,
techniques rooted in Artificial Intelligence, such as
Machine Learning (Supervised and Unsupervised
ML), are also employed for this context (Ayon, S. I,
2019).
The primary aim of this research is to conduct a
thorough examination of the utilization of
Clustering, an unsupervised Machine Learning
technique, in the domain of SDP (Gong, L., Jiang, S.,

& Jiang, L. 2019). We have reviewed publications
up to the year 2023, taking into account various
dimensions, such as the choice of a specific
machine learning algorithm, the unique
contributions made by authors, and the
identification of research gaps that could
potentially shape the future directions of this field.

1.1. Machine Learning Techniques
In recent years, machine learning techniques have
garnered widespread recognition owing to their
impressive capabilities and technical
advancements. In recent fiercely competitive
business landscape, machine learning (ML) plays a
vital role in expediting digital transformation and
in the era of automation. Machine learning
techniques are applied to software to achieve
quality, maintainability, and reusability by
identifying defects, faults, ambiguities, and
unpleasant smells. ML also helps in researching
many areas in software engineering (Usman-
Hamza, et al., 2019). These techniques, grounded in
statistical methods, empower algorithms to make
predictions and categorizations, unveiling valuable
insights in the domain of software. These insights
significantly influence decision-making processes
and key performance indicators associated with
software applications. Many researchers have
focused on machine learning techniques to solve
the binary classification problems, including
Network Intrusion Detection, Sentiment Analysis
(Yang, Y., Yang, J., & Qian, H, 2018), lexicon driven
sentiment analysis, Latest transformations in
scrum, Rainfall Prediction, cross project defect
prediction and SDP. In the context of research on
SDP, two primary machine learning techniques,
Supervised and Unsupervised are prominent.
Additionally, Semi-supervised and Reinforcement
Learning techniques also exist but find limited
application in SDP. Notably, Deep Learning
techniques and Ensemble Learning are also gaining
importance in SDP. Using the ensemble learning
technique, many models can be combined into a
single group model in machine learning. Voting,
bagging, boosting, and stacking are examples of the
widely used ensemble approach.

1.2. Supervised Machine Learning
Supervised Learning emerges as the most widely
adopted method for predicting software bugs. Its
core principle revolves around using datasets

A. Batool International Journal on Computations, Information and Manufacturing (IJCIM) 3(2) -2023- 59

https://doi.org/10.54489/ijcim.v3i2.283 Published by GAFTIM, https://gaftim.com

having labels to train the algorithms for
dependable class prediction. Two classification
approaches exist within supervised learning: one
involves dividing data into training, testing, and
validation sets, while the other employs n cross-
validation techniques (Balogun, A., et al.,2019).
 Key characteristics of supervised machine
learning include:
The primary objective of the model is to determine
labels / values for unseen instances based on their
characteristics. Labels denote the values associated
with a data instance's chosen target attribute,
predicted by utilizing information derived from
other attributes.
Classification problems arise when labels
represent categories, whereas regression
problems involve labels as continuous numerical
values.
To forecast the likelihood of software defects,
Incorporating each software instance as a data
point, with software attributes defining its
characteristics, and determining whether the
software exhibits defects or not serves as a
fundamental aspect of our methodology. This
approach assists in the identification of
problematic modules. After gathering flawed data,
it is possible to create an ML model to assess new
software for faults early in the development
process, ensuring software reliability and quality.
To address class imbalance issues, common data
sampling techniques are employed, as software
defects are often a minority class compared to non-
defective instances, potentially affecting prediction
model accuracy.
There are many supervised machine learning
methods like Support Vector Machine (SVM),
Decision Tree(DT), Random Forest, Naïve
Bayes(NB), Linear Regression, Logistic Regression,
K-Nearest Neighbour, Artificial Neural Network,
Multi Layer Preceptron.

1.3. Unsupervised Learning:
Unsupervised learning (Tang, S., Huang, et al.,
2022) is a machine-based technique that differs
from supervised learning in that it doesn't rely on
labeled training data but instead utilizes unlabeled
datasets. In this approach, it identifies concealed
patterns within the provided data without human
guidance. Unlike supervised learning,
unsupervised learning is not directly applicable to
regression or classification problems since there

are no corresponding output data corresponds to
entered data.
Unsupervised learning primarily relies on the
method of clustering (Ayon, S. I, 2019), a valuable
tool for classifying data objects into separate
groups or clusters. Clustering is instrumental in
structuring a set of objects by grouping those that
exhibit similarity. In the realm of software quality
analysis, clustering is applied to datasets that
comprise measurements from both defective and
non-defective software. Within this framework, the
data is divided into two clusters based on the
presence of defects. Following this division, the
datasets undergo suitable clustering techniques to
predict faulty and faultless modules using software
defect prediction algorithms. Moreover, clustering
methods can also serve as a means to evaluate the
quality of software.
A notable feature of clustering is the capability to
function effectively in the presence of noise,
without necessitating the predefinition of clusters.
There are many clustering techniques used for SDP
like K-means Clustering (Matloob, F, et al.,2021)
Hierarchical Clustering, Density-based Clustering,
Neural Network Clustering, Expectation
Maximization Clustering, Spectral Clustering and
Optimization Clustering.
Various research studies have demonstrated that
Clustering Software Defect Prediction models
exhibit comparable predictive performance to
Supervised Defect Prediction models. This suggests
that clustering models for defect prediction may
not be as challenging as previously believed and
should be considered when there is limitation on
labeled training data. Furthermore, scholars have
noted that the attributes of a dataset substantially
influence predictive accuracy, whether employing
unsupervised or supervised models for defect
detection in software. Therefore, a more thorough
exploration of these dataset properties' relevance
is warranted. Furthermore, investigating the
interaction between the learning system and the
dataset could prove beneficial, as it remains a
question of which specific learning approach,
whether supervised or unsupervised, excels under
different circumstances.

2. RELATED WORK
This section presents an insight in recent
investigations in software defect detection
conducted by a variety of researchers. The

A. Batool International Journal on Computations, Information and Manufacturing (IJCIM) 3(2) -2023- 60

https://doi.org/10.54489/ijcim.v3i2.283 Published by GAFTIM, https://gaftim.com

examination centers on research that has
formulated a faultless prediction model for
anticipating software glitches through the
utilization of clustering, an unsupervised machine
learning technique.
In the research (Ni, C., Liu, W., Gu, Q., Chen, X., &
Chen, D, 2017), they introduced a novel clustering
technique designed to group the modules. They
presented the Hybrid Elitist Self-Adaptive Multi-
Population Social Mimic Optimization technique
(ESAMP-SMO). Key attributes of ESAMP-SMO
algorithm include self-adaptation, multi-
population management, elitism, crossover, and
mutation. The research methodology began with
an exploration of the maximum number of
generations, followed by the generation of initial
candidate solutions and the division of the
population into sub-populations. Subsequently, a
social mimic optimization process was applied to
each sub-population, culminating in the merging of
all sub-populations and the identification of a new
global leader solution. After a careful examination,
the cross and mutation operations were applied,
leading to the final output solution. The evaluation
of approach involved the use of various
performance metrics, including Precision (P),
accuracy (ACC), recall (R), sensitivity, F1-score,
specificity, false negative rate (FNR), Fowlkes-
Mallows Index (FMI), false positive rate (FPR) and
Youden's index (YI). These metrics were applied to
three well-known NASA benchmark datasets,
namely, CM1, KC1, and JM1. In order to gauge the
effectiveness, they conducted a benchmark
comparison with evolutionary-based clustering
methods such as Crow Search Algo, Particle Swarm
Optimization, Jaya Optimization Algorithm, Gray
Wolf Optimization and Genetic Algorithm. The
results of the performance comparison analysis
unambiguously demonstrate the superior
performance of our proposed clustering technique
when compared to the other competing
approaches. The research aimed to enhance the
model's performance concerning dataset accuracy
and precision when compared to prior studies. To
achieve this goal, they employed K-means
clustering to categorize class labels and
subsequently applied classification models to
specific features. Their analysis involved three ML
classification models: Linear SVC (SVM), Gaussian
NB (NB), and Random Forest (RF) with Stacking
ensemble methodology, where NB served as the

base model, RF and SVM as member models.
Particle Swarm Optimization(PSO) was used to
optimize the ML models. They assessed model
performance using accuracy, precision, F-measure,
recall, confusion matrix and performance error
metrics. The results showed that all optimized ML
and ML models achieved the maximum potential,
with SVM and optimized SVM models
outperforming the rest with the highest accuracy
rates of 99% and 99.80%, respectively. The
accuracy scores for RF, Optimized RF, NB,
Optimized NB, and ensemble approaches were
98.70%, 99.50%,93.90%, 93.80%, 98.80%, and
97.60%, respectively.
Many defect-related features have been developed
for SDP by researchers in order to increase
prediction performance. However, the
performance of defect prediction will be
significantly diminished by feature redundancy
(FR) and irrelevance brought on by the growing
dimensions of data. Researchers have suggested a
number of data dimensionality reduction
techniques to address the issues. The two types of
approaches that make up these techniques are
feature selection and feature extraction. The two
types of approaches both have advantages and
disadvantages, though. In order to enhance the
performance of SDP, they suggested a Hybrid
Feature Dimensionality Reduction Approach
(HFDRA) for SDP in study (Usman-Hamza, et al.,
2019). This approach combines the two various
types of approaches. The two stages of the HFDRA
technique are feature selection and feature
extraction. In the feature selection stage, HFDRA
first uses a clustering method to separate the
original features into various feature subsets. Then,
in the feature extraction stage, each feature
subset's dimensionality is decreased using kernel
principal component analysis (KPCA). The
prediction model is then created using the
reduced-dimensional data. They defined the
correlation among features (FF-correlation) and
the correlation between features and defect types
(FC-correlation). 22 projects from AEEEM,
SOFTLAB, MORP, and ReLink are used as
experiment objects in the empirical investigation.
In this study, they first compared their method
with three state-of-the-art approaches and seven
baseline methods named as ALL, IG, MIC, KPCA,
CFS, FCBF and ReliefF. NB and SVM are two
separate classifiers that they used in this paper's

A. Batool International Journal on Computations, Information and Manufacturing (IJCIM) 3(2) -2023- 61

https://doi.org/10.54489/ijcim.v3i2.283 Published by GAFTIM, https://gaftim.com

experiment to develop a defect prediction model.
Next, they examined the connection between FR
and forecast accuracy. AUC, F1, and MCC three
measures are also used to assess the success of four
different prediction algorithms. On each project,
the experimental outcome is also based on the 10-
fold cross-validation average value. The results of
the experiments demonstrate that their strategy
outperforms cutting-edge data dimensionality
reduction techniques for fault prediction.
The majority of CPDP approaches base their defect
prediction models on how closely two projects'
feature spaces or data are related. The problem
arises in case when the target project has a tiny
amount of label data. Therefore, it is challenging to
get acceptable prediction performance using these
methods when the distribution between the source
project and the target project is substantially
different. This paper (Huda, S., Liu, K., Abdelrazek,
et al., 2018) developed a CPDP approach based on
semisupervised clustering, known as Tsbagging, to
address this issue. The clustering stage and the
ensemble stage make up the majority of tsbagging.
The data from the source project were clustered
using a semisupervised method (TSCluster), and
various weights were then applied to the data in
accordance with the clustering results. They
employed bagging to train a number of classifiers
and integrate them to forecast the defect in the
ensemble stage, which was dependent on the
weights provided in the clustering step. In this
study, we analyze the effectiveness of defect
prediction using the F1-measure, MCC, g-measure,
and balance. The experimental results
demonstrate that Tsbagging outperforms other
SDP approaches in terms of performance. The
primary goal of the study conducted in reference
(Usman-Hamza, et al., 2019) was to evaluate the
efficiency of integrating clustering techniques with
feature selection methods as a strategy to address
the software defect prediction challenge. The study
examined seven preprocessed datasets from the
National Aeronautics and Space Administration
(NASA) utilizing a variety of clustering techniques,
including K-MEANS, Density-Based (DB),
Expectation Maximization (EM), Self-Organizing
Maps (SOM), Farthest First, Neural Networks,
Learning Vector Quantization (LVQ), and X-Means.
To evaluate and compare a variety of feature
selection techniques, the researchers conducted an
analysis of software defect prediction using PSO,

Cuckoo, Bat, and Grey Wolf Optimizer (GWO). Their
framework comprises three key stages: Feature
Selection, Clustering & Decision Making. The
experimental setup was conducted in two
dimensions. Initially, datasets were directly input
into classifiers prior to the feature selection phase.
In the second dimension, datasets underwent
feature selection before being processed. The
authors employed the WEKA platform and a 10-
fold cross-validation method to assess data and to
compare outcomes. The performance of the
developed model was evaluated based on
sensitivity, accuracy, precision, and F-measures.
The results highlighted the efficacy of the Farthest
First clustering algorithm in software fault
prediction, while Bat and Cuckoo algorithms
demonstrated superiority compared to other
metaheuristic approaches. In software defect
datasets, the presence of redundant and irrelevant
features can significantly impede the effectiveness
of defect prediction models and increase
computational complexity. To address this issue,
(Alsawalqah, H, et al., 2020) introduced the ReliefF-
based clustering [RFC] algorithm, a feature
selection (FS) method that identifies and
eliminates redundant and irrelevant features. The
RFC commences by employing symmetric
uncertainty to compute feature correlations and
subsequently leverages this data to group features
into clusters, employing the k-medoids algorithm.
Following this step, it proceeds to choose
representative features from each cluster,
culminating in the creation of the ultimate feature
subset. RFC takes into account both feature
correlations and relevance to the targeted class,
effectively mitigating that issue of dimensionality
and enhancing the performance of SDP. In their
experiments, the authors compared the proposed
RFC with traditional FS algorithms using nine
datasets from the NASA for SDP. Evaluation metrics
included the (AUC) area under the curve and F-
value. The experiments clearly demonstrated the
capability of RFC to significantly enhance SDP
performance.
In this research paper (Balogun, A., et al.,2019),
they introduced a novel hybrid heterogeneous
ensemble method designed for SDP.
Heterogeneous ensembles are comprised of
classifiers based on various techniques, each with
its distinct pros and cons. The primary objective of
this researched approach is to construct resilient

A. Batool International Journal on Computations, Information and Manufacturing (IJCIM) 3(2) -2023- 62

https://doi.org/10.54489/ijcim.v3i2.283 Published by GAFTIM, https://gaftim.com

and expert heterogeneous machine learning
classification models. This approach unfolds in
three principal phases: Clustering and Data
Segmentation: In the initial phase, they employed a
clustering on the training dataset to partition into
groups of instances that show some similarity. The
determination of the optimal number of clusters in
the final model hinges on the G-mean outcomes
obtained during the training phase. To mitigate
overfitting, they conducted the training using a
two-fold cross-validation approach with four
settings: 9, 7, 5 or 3 clusters. The optimal number
of clusters that yields the highest G-mean value was
selected for application in the final testing phase.
Classifier Training: The second phase involved
training various classifiers based on the groups
generated in the 1st phase. Evaluation and
Prediction of developed Model: Finally, in the 3rd
phase, they assessed the performance of the
developed models and employ them to predict
instances not represented in the training data. The
proposed approach comprises two versions: the
first utilizes simple classifiers (k-Nearest
Neighbour, Naïve Bayes, and Decision Tree), while
the second employs ensemble classifiers (Adaptive
Boosting, Bagging, Random Forest and XGBoost).
To evaluate the effectiveness of approach, they
conducted experiments on 21 publicly available
benchmark datasets. Precision, recall, and G-mean
served as the evaluation metrics. The outcome of
their assessment illustrated the dominance of the
ensemble variant when compared to other well-
established basic and ensemble classification
methods. K-Means is a common and effective
clustering technique. Since it can be confused by
randomly chosen centroid positions, this method
cannot produce optimum results. The central point
algorithm was presented in (Annisa, R., Rosiyadi,
D., & Riana, D, 2020) as a method for determining
the K-Means algorithm's initial centroid value. The
point center algorithm is able to count the number
of clusters in addition to computing the initial
centroid value. This approach pitted ten datasets
against each other and relied on choosing variables
X and Y to identify the cluster members. Software
defect estimation datasets make up 9 of the
certified datasets. The results of the suggested
approach in the datasets Iris, PC2, PC4, MW1, and
KC3 have decreased error results. Some datasets,
like PC2, showed the greater Rand Index value.
Another experimental finding indicated that, when

compared to the straightforward K-Means
approach, the suggested algorithm may reduce
cluster errors in software defect modules by
12.82%. Since our proposed method outperforms
the straightforward K-Means method in terms of
accuracy, it may be beneficial for clustering various
types of data. The study (Ayon, S. I, 2019)
experienced the effectiveness of clustering in the
context of SDP. The researchers employed seven
distinct clustering techniques: Farthest First, X-
Means, K-Means, Sequential Information
Bottleneck (SIB), Density-based Clustering (DBC),
Hierarchical Clustering (HC) and Expectation
Maximization (EM). These techniques were applied
to classify eight software datasets sourced from the
NASA repository. The experimental results
emphasized the well-established utility of
clustering techniques as a classification approach,
leading to robust predictive performance. By
considering average accuracy Farthest First
showed the highest performance at 86.16%,
closely followed by HC at 85.50%. K-Means
displayed a respectable accuracy of 72.33%.
Conversely, EM achieved 33.52% accuracy, and X-
Means achieved 48.84%, indicating relatively
weaker results. SIB and DBC techniques achieved
moderate performance at 63% and 71.08%,
respectively. Furthermore, a comparison with
traditional classification methods such as NB, k-
Nearest Neighbor and DT revealed that certain
clustering-based classification techniques, namely
Farthest First and Hierarchical Clustering
Techniques, outperformed some standard
classification algorithms. Consequently, clustering-
based classification emerges as a viable alternative
to traditional methods in SDP, providing robust
predictive capabilities while eliminating the need
for training predictive models and utilizing
annotated datasets during model development. As
a result, SDP models developed using clustering-
based classification techniques can be easily
transferred across projects, as they do not require
model training. This approach streamlines
resource allocation during the software
development process, enhancing efficiency and
resource management.
The research (Tang, S., Huang 2022) delved into
the influence of feature selection approaches on
software defect prediction through clustering
techniques. They examined three distinct
clustering techniques: Farthest First, K-Means, and

A. Batool International Journal on Computations, Information and Manufacturing (IJCIM) 3(2) -2023- 63

https://doi.org/10.54489/ijcim.v3i2.283 Published by GAFTIM, https://gaftim.com

Density Based Clustering, alongside three
techniques i.e. Chi-Square, Information Gain and
Clustering Variation. These were applied to
software defected datasets taken from the NASA
repository. The Farthest First classification via
clustering algorithm emerged as the top performer,
not only achieving the highest average accuracy of
78.57% but also attaining the highest precision of
0.792 and recall of 0.786% values. In the realm of
software defect prediction via clustering methods,
the Farthest First model led with an accuracy of
78.57%, followed by K-Means at 75.71%, and
Density based clustering at 73.77%, respectively.
Additionally, their findings indicated that the
application of feature selection methods enhanced
the average accuracy of both K-Means and Farthest
First clustering techniques. The most effective SDP
model was the Farthest-First model, incorporating
the Information Gain method, achieving an
accuracy of 78.69%, a recall of .788 and a precision
of .804. This highlights that classification via
clustering methods can yield competitive
outcomes when compared to conventional
classification approaches, with the added
advantage of not necessitating training on labeled
datasets, making them suitable for application on
unlabeled datasets. In practical scenarios, SDP
models often face the challenge of handling highly
imbalanced datasets. This imbalance creates
difficulties for classifiers in accurately identifying
defective instances. One common strategy to tackle
this issue involves using oversampling techniques,
which aim to balance the distribution of faulty and
non-faulty dataset instances by generating new
instances classified as defective. However,
traditional oversampling methods frequently
generate synthetic instances lacking diversity and
introducing unnecessary noise into the dataset.In
response to this concern, a novel approach was
introduced by researchers in a study referred to as
(Tang, S., Huang, et al., 2022). Their proposed
method, known as KMFOS(Cluster-based Over-
sampling with noise filtering), was specifically
designed to address the imblalance datasets
challenge. Initially, the KMFOS approach group the
faulty instances in k clusters. It then creates new
defective data records through interpolation
between the instances belonging to every pair of
clusters. This ensures that the newly generated
defective instances are distributed diversely across
the defective dataset. To further improve the

quality of oversampled data, the researchers
extended the cluster-based oversampling process
by incorporating the CLNI (Closest List Noise
Identification) technique to identify and filter out
noisy dataset instances.To assess the effective
performance of KMFOS, the researchers conducted
a comprehensive series of experiments across 24
projects. They compared KMFOS with various
oversampling techniques, including SMOTE,
BorderlineSMOTE, ADASYN, ROS (random
oversampling), SMOTE + IPF, K-means SMOTE,
SMOTE + ENN, and SMOTE + Tomek Links.
Additionally, they evaluated KMFOS against other
standard methods for addressing class imbalance,
such as balance bagging classifier, Instance
Hardness Threshold, RUS boost classifier and cost-
sensitive approaches. The results unequivocally
demonstrated that KMFOS outperforms other
oversampling methods and class-imbalance
mitigation techniques in terms of achieving higher
Recall and balance values. In the study presented in
(Ayon, S. I, 2019), the authors introduced a multi-
step approach for feature selection and
classification. Initially, they employed Genetic
Algorithm (GA) to select relevant features from the
dataset. Subsequently, they formed feature clusters
using PSO. Following this feature preprocessing
stage, the researchers trained their model using
various Neural Network methods, including
Recurrent Neural Network (RNN), Feedforward
Neural Network (FNN), Deep Neural Network
(DNN) and Artificial Neural Network (ANN). To
evaluate the model's performance, they computed
several evaluation metrics, including sensitivity,
accuracy, specificity, negative prediction value,
precision, F1 score, and Matthews correlation
coefficient. To assess the proposed approach's
effectiveness, the authors conducted experiments
on five distinct datasets, namely: PC1, KC1, CM1,
JM1, and KC2. To ensure robust evaluation, they
implemented 10-fold cross-validation .
Remarkably, results revealed that the DNN
consistently achieved accuracy levels exceeding
90% across all datasets. Additionally, the other
three methods—FNN, RNN, and ANN—also
demonstrated strong performance, yielding
commendable accuracy results.
An approach for software defect prediction based
on clustering-based undersampling and ANN is
presented in research (Zhang, S., Jiang, S., & Yan, Y.
2023). First, a subset of the majority samples is

A. Batool International Journal on Computations, Information and Manufacturing (IJCIM) 3(2) -2023- 64

https://doi.org/10.54489/ijcim.v3i2.283 Published by GAFTIM, https://gaftim.com

chosen using clustering-based under-sampling,
and this subset is joined with the minority samples
to create a balanced data set. Second, using the
balanced data set produced, an ANN model is
created and trained. Ten nodes in a single hidden
layer made up the created ANN model.
Additionally, softmax function is used which is the
output layer's transfer function, while log-
sigmoidal was the transfer function of hidden layer.
Adam is employed to instruct the ANN. Adam is a
stochastic objective function optimization that
uses gradients. To determine the number of
majority samples that produces the best
performance metrics, a sensitivity analysis is also
done. Accuracy, PF (Probability of False Alarm or
FPR), PD (Probability of Detection or T PR), F1-
measure, ROC, and Balance are some of the
performance metrics employed. The results
demonstrate a high degree of prediction accuracy
for the detection of defective modules while
preserving the capability of defect-free module
detection. Most defect prediction methodologies
require a substantial amount of labeled data for
effective training, typically on modules within the
same project. Such approaches are commonly
referred to as "within project defect prediction"
(WPDP). However, WPDP models may encounter
challenges when confronted with limited training
data. To address this issue, researchers have
introduced cross project defect prediction and
unsupervised machine learning techniques. CPDP
models, as opposed to WPDP, utilize training data
sourced from different projects for the purpose of
forecasting defect proneness in modules within a
particular project. Nevertheless, CPDP's
performance is notably sensitive to variations in
data distribution across different projects. In
(Xiaolong, X. U, et al., 2021) they proposed a novel
approach known as Cluster Ensembles and
Labeling (CEL) for unlabeled datasets defect
prediction. Instead of performing clustering on a
single dataset, CEL employs a methodology
involving the generation of multiple data
partitions. Cluster algorithms are subsequently
applied to these partitions, and the results from
these various clusters are then combined. To assess
the effectiveness of CEL, a series of experiments
were conducted using fifteen(15) projects
obtained from three(3) distinct data repositories,
specifically , AEEEM, Relink, and PROMISE. The
experimental outcomes reveal that CEL exhibits

superior prediction performance compared to the
exceptional unsupervised learning model CLA.
Additionally, a comparative analysis was
performed between CEL and several supervised
learning models, including Decision Tree , Logistic
Regression and Random Forest employing
evaluation metrics like precision, recall, and F-
measure. In conclusion, the research findings
consistently demonstrate that CEL outperforms
the CLA model across a range of experimental
datasets. The researchers in (Almayyan, W, 2021).
introduced an innovative approach called Feature
Selection using Clusters of Hybrid-data. Their
primary objective was the minimization of the
feature distributions dissimilarity in the context of
CPDP (Cross Project Defect Prediction) between
the source and target project datasets. The
proposed method consists of two stages. Initially, it
utilizes the DPC (Density-Based Clustering) to
partition the real dataset into number of clusters.
Subsequently, three distinct ranking strategies,
namely Similarity of Feature Distributions (SFD),
Local Density of Features (LDF), and Feature-Class
Relevance (FCR), are proposed to select features
from each cluster. These approaches do not aim to
map features but rather offer guidance in selecting
relevant software metrics within the context of
CPDP.To evaluate the effectiveness of FeSCH, a
series of experiments were conducted using the
AEEEM dataset. These experiments included a
comparative analysis with alternative methods and
a thorough examination of its design choices. To
assess FeSCH's performance across different
classifiers, a comparison was carried out with three
widely used classifiers: Random Forest, Logistic
Regression and Naive Bayes. The conclusive
findings demonstrate that FeSCH consistently
outperforms three methods (ALL,WPDP and TCA+)
in various scenarios, maintaining its superiority
irrespective of the chosen classifiers.

REFERENCES
Thirumoorthy, K., & Britto, J. J. J. (2022). A clustering approach

for software defect prediction using hybrid social mimic
optimization algorithm. Computing, 104(12), 2605-
2633.

Khalid, A., Badshah, G., Ayub, N., Shiraz, M., & Ghouse, M.
(2023). Software Defect Prediction Analysis Using
Machine Learning Techniques. Sustainability, 15(6),
5517.

Zhang, S., Jiang, S., & Yan, Y. (2023). A Software Defect
Prediction Approach Based on Hybrid Feature

A. Batool International Journal on Computations, Information and Manufacturing (IJCIM) 3(2) -2023- 65

https://doi.org/10.54489/ijcim.v3i2.283 Published by GAFTIM, https://gaftim.com

Dimensionality Reduction. Scientific Programming,
2023.

Tang, S., Huang, S., Liu, E., Yao, Y., Wu, K., & Ji, H. (2022).
Tsbagging: A Novel Cross-Project Software Defect
Prediction Algorithm Based on Semisupervised
Clustering. Scientific Programming, 2022.

Almayyan, W. (2021). Towards predicting software defects
with clustering techniques. International Journal of
Artificial Intelligence and Applications (IJAIA), 12(1).

Xiaolong, X. U., Wen, C. H. E. N., & Xinheng, W. A. N. G. (2021).
RFC: a feature selection algorithm for software defect
prediction. Journal of Systems Engineering and
Electronics, 32(2), 389-398.

Alsawalqah, H., Hijazi, N., Eshtay, M., Faris, H., Radaideh, A. A.,
Aljarah, I., & Alshamaileh, Y. (2020). Software defect
prediction using heterogeneous ensemble classification
based on segmented patterns. Applied Sciences, 10(5),
1745.

Annisa, R., Rosiyadi, D., & Riana, D. (2020). Improved point
center algorithm for k-means clustering to increase
software defect prediction. Int. J. Adv. Intell. Informatics,
6(3), 328-339.

Balogun, A., Oladele, R., Mojeed, H., Amin-Balogun, B.,
Adeyemo, V. E., & Aro, T. O. (2019). Performance
analysis of selected clustering techniques for software
defects prediction.

Usman-Hamza, F. E., Atte, A. F., Balogun, A. O., Mojeed, H. A.,
Bajeh, A. O., & Adeyemo, V. E. (2019). Impact of feature
selection on classification via clustering techniques in
software defect prediction. Journal of Computer Science
and Its Application, 26(1).

Gong, L., Jiang, S., & Jiang, L. (2019). Tackling class imbalance
problem in software defect prediction through cluster-
based over-sampling with filtering. IEEE Access, 7,
145725-145737.

Ayon, S. I. (2019, May). Neural network based software defect
prediction using genetic algorithm and particle swarm
optimization. In 2019 1st International Conference on
Advances in Science, Engineering and Robotics
Technology (ICASERT) (pp. 1-4). IEEE.

Yang, Y., Yang, J., & Qian, H. (2018, March). Defect prediction by
using cluster ensembles. In 2018 tenth international
conference on advanced computational intelligence
(ICACI) (pp. 631-636). IEEE.

Ni, C., Liu, W., Gu, Q., Chen, X., & Chen, D. (2017, July). FeSCH: a
feature selection method using clusters of hybrid-data
for cross-project defect prediction. In 2017 IEEE 41st
Annual Computer Software and Applications
Conference (COMPSAC) (Vol. 1, pp. 51-56). IEEE.

Sharma, T., Jatain, A., Bhaskar, S., & Pabreja, K. (2023).
Ensemble Machine Learning Paradigms in Software
Defect Prediction. Procedia Computer Science, 218, 199-
209.

Mafarja, M., Thaher, T., Al-Betar, M. A., Too, J., Awadallah, M. A.,
Abu Doush, I., & Turabieh, H. (2023). Classification
framework for faulty-software using enhanced
exploratory whale optimizer-based feature selection
scheme and random forest ensemble learning. Applied
Intelligence, 1-43.

Bowes, D., Hall, T., & Petrić, J. (2018). Software defect
prediction: do different classifiers find the same
defects?. Software Quality Journal, 26, 525-552.

Huda, S., Liu, K., Abdelrazek, M., Ibrahim, A., Alyahya, S., Al-
Dossari, H., & Ahmad, S. (2018). An ensemble
oversampling model for class imbalance problem in
software defect prediction. IEEE access, 6, 24184-
24195.

Matloob, F., Ghazal, T. M., Taleb, N., Aftab, S., Ahmad, M., Khan,
M. A., ... & Soomro, T. R. (2021). Software defect
prediction using ensemble learning: A systematic
literature review. IEEE Access, 9, 98754-98771.

Aftab, S., Alanazi, S., Ahmad, M., Khan, M. A., Fatima, A., &
Elmitwally, N. S. (2021). Cloud-Based Diabetes Decision
Support System Using Machine Learning Fusion.
Computers, Materials & Continua, 68(1).

