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A  B S T R A C T 

 
Anticipating software defects prior to the testing phase proves advantageous for 
efficient resource allocation to develop the high-quality software, a necessity for 
any organization. Machine learning (ML)  methodologies play a pivotal role in 
addressing these issues, leading to the creation of numerous predictive models 
designed to categorize software modules as either defective or non-defective. 
Several obstacles hinder the analysis of software data that is defected, 
encompassing issues like redundancy, correlation, irrelevant features, missing data 
points, and an unbalance distribution between faulty and non-faulty classes. Both 
supervised and unsupervised machine learning techniques have garnered global 
attention from practitioners and researchers as viable approaches to tackle these 
challenges, yielding noticeable enhancements in defect prediction accuracy. This 
review paper examines clustering unsupervised machine learning technique 
developed for software defect prediction spanning the years 2017 to 2023 and 
covered the 15 researches. 

 
1. INTRODUCTION  
Software engineering is a branch of engineering 
that produces a wide range of software products 
that are reliable, effective, and efficient at their 
jobs. It covers every facet of software development, 
from the specification of the program to user 
maintenance once it is delivered to them. This 
suggests that the procedure used to produce 
software and the effectiveness of its testing are the 
only factors that affect the software's quality 
(Mafarja, M, et al., 2023). In other words the goal of 
software engineering has traditionally been to 
produce high-quality software with little 
resources. Regrettably, errors have the potential to 
manifest at any stage of the software development 
process and the utilization of software has become 
intertwined with daily work routines and business 
operations. The emergence of defects within 
software can potentially trigger significant 
economic disruptions. Hence, one of the 
paramount objectives within the software industry 

is the ability to anticipate software defects 
beforehand. This anticipation aids in the 
identification of classes and modules that are prone 
to errors, subsequently necessitating modifications 
or the application of diverse testing strategies. A 
crucial part of the development process is the 
testing phase. Improving software quality and 
cutting overall costs are the two main goals of the 
testing process (Thirumoorthy, K., & Britto, J. J. J. 
2022). The pursuit of constructing high-quality 
software places considerable emphasis on defect 
prediction, as considerable time and effort are 
expended on testing and debugging. The quantity 
of flaws in software determines its quality. A high 
defect count results in decreased customer 
satisfaction, more organizational costs and 
resource consumption, and delayed testing. Defect 
prediction methodologies are introduced with the 
intention of streamlining software testing and 
debugging endeavors. By highlighting software 
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components with a higher likelihood of being 
faulty, these methodologies offer guidance to 
developers, assisting them in effectively 
prioritizing their efforts. Undetected defects or 
vulnerabilities can lead to escalating expenses, 
primarily in the form of costs associated with fixing 
or remediation. Employing automated tools for 
static analysis offers an immediate understanding 
of the root causes of these issues, simplifying the 
resolution of longstanding problems. One of the 
software engineering research topics that is still 
being extensively studied is software defect 
prediction (SDP) (Khalid, A., Badshah, G, et al., 
2023). The testing procedure is optimally 
facilitated by the use of Software Fault Prediction 
(SFP/ SDP). Software modules are categorized as 
either defect-prone or non-defect-prone by the 
defect prediction process. Software effect area 
exploration commonly makes use of defect 
prediction techniques such clustering (Aftab, S., 
Alanazi, S, et al., 2023) , statistical approaches, 
mixed algorithms, neural network-based metrics, 
black box testing, white box testing, and machine 
learning. In the past, conventional methods for 
defect detection included activities such as 
reviews, walkthroughs, code inspections, and 
testing, but defects could also be stumbled upon by 
chance. If the erroneous software modules are 
found before the testing stage, the cost of testing 
can be greatly reduced and also the entire cost of 
development can be decreased, with the assurance 
of excellent quality if only those software modules 
that are identified as defective are shortlisted for 
testing, as testing operations demand a large 
amount of resources (Bowes, D., Hall, T., & Petrić, J. 
2018). It results in early fixes and, ultimately, on-
time delivery of maintainable software, satisfying 
the client and fostering his trust in the 
development team. Focusing on the software 
modules where problems were most likely to 
emerge would save a large amount of time if the 
development team knew in advance which 
software modules were problematic. Additionally, 
techniques rooted in Artificial Intelligence, such as 
Machine Learning (Supervised and Unsupervised 
ML), are also employed for this context (Ayon, S. I, 
2019). 
The primary aim of this research is to conduct a 
thorough examination of the utilization of 
Clustering, an unsupervised Machine Learning 
technique, in the domain of SDP (Gong, L., Jiang, S., 

& Jiang, L. 2019). We have reviewed publications 
up to the year 2023, taking into account various 
dimensions, such as the choice of a specific 
machine learning algorithm, the unique 
contributions made by authors, and the 
identification of research gaps that could 
potentially shape the future directions of this field. 
 
1.1. Machine Learning Techniques 
In recent years, machine learning techniques have 
garnered widespread recognition owing to their 
impressive capabilities and technical 
advancements. In recent fiercely competitive 
business landscape, machine learning (ML)  plays a 
vital role in expediting digital transformation and  
in the era of automation. Machine learning 
techniques are applied to software to achieve 
quality, maintainability, and reusability by 
identifying defects, faults, ambiguities, and 
unpleasant smells. ML also helps in researching 
many areas in software engineering (Usman-
Hamza, et al., 2019). These techniques, grounded in 
statistical methods, empower algorithms to make 
predictions and categorizations, unveiling valuable 
insights in the domain of software. These insights 
significantly influence decision-making processes 
and key performance indicators associated with 
software applications. Many researchers have 
focused on machine learning techniques to solve 
the binary classification problems, including 
Network Intrusion Detection, Sentiment Analysis 
(Yang, Y., Yang, J., & Qian, H, 2018), lexicon driven 
sentiment analysis, Latest transformations in 
scrum, Rainfall Prediction, cross project defect 
prediction and SDP. In the context of research on 
SDP, two primary machine learning techniques, 
Supervised and Unsupervised are prominent. 
Additionally, Semi-supervised and Reinforcement 
Learning techniques also exist but find limited 
application in SDP. Notably, Deep Learning 
techniques and Ensemble Learning are also gaining 
importance in SDP. Using the ensemble learning 
technique, many models can be combined into a 
single group model in machine learning. Voting, 
bagging, boosting, and stacking are examples of the 
widely used ensemble approach. 
 
1.2. Supervised Machine Learning 
Supervised Learning emerges as the most widely 
adopted method for predicting software bugs. Its 
core principle revolves around using datasets 
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having labels to train the algorithms for 
dependable class prediction. Two classification 
approaches exist within supervised learning: one 
involves dividing data into training, testing, and 
validation sets, while the other employs n cross-
validation techniques (Balogun, A., et al.,2019). 
 Key characteristics of supervised machine 
learning include: 
The primary objective of the model is to determine 
labels / values for unseen instances based on their 
characteristics. Labels denote the values associated 
with a data instance's chosen target attribute, 
predicted by utilizing information derived from 
other attributes. 
Classification problems arise when labels 
represent categories, whereas regression 
problems involve labels as continuous numerical 
values. 
To forecast the likelihood of software defects, 
Incorporating each software instance as a data 
point, with software attributes defining its 
characteristics, and determining whether the 
software exhibits defects or not serves as a 
fundamental aspect of our methodology. This 
approach assists in the identification of 
problematic modules. After gathering flawed data, 
it is possible to create an ML model to assess new 
software for faults early in the development 
process, ensuring software reliability and quality. 
To address class imbalance issues, common data 
sampling techniques are employed, as software 
defects are often a minority class compared to non-
defective instances, potentially affecting prediction 
model accuracy. 
There are many supervised machine learning 
methods like Support Vector Machine (SVM), 
Decision Tree(DT), Random Forest, Naïve 
Bayes(NB), Linear Regression, Logistic Regression, 
K-Nearest Neighbour, Artificial Neural Network, 
Multi Layer Preceptron. 
 
1.3. Unsupervised Learning: 
Unsupervised learning (Tang, S., Huang, et al., 
2022) is a machine-based technique that differs 
from supervised learning in that it doesn't rely on 
labeled training data but instead utilizes unlabeled 
datasets. In this approach, it identifies concealed 
patterns within the provided data without human 
guidance. Unlike supervised learning, 
unsupervised learning is not directly applicable to 
regression or classification problems since there 

are no corresponding output data corresponds to  
entered  data. 
Unsupervised learning primarily relies on the 
method of clustering (Ayon, S. I, 2019), a valuable 
tool for classifying data objects into separate 
groups or clusters. Clustering is instrumental in 
structuring a set of objects by grouping those that 
exhibit similarity. In the realm of software quality 
analysis, clustering is applied to datasets that 
comprise measurements from both defective and 
non-defective software. Within this framework, the 
data is divided into two clusters based on the 
presence of defects. Following this division, the 
datasets undergo suitable clustering techniques to 
predict faulty and faultless modules using software 
defect prediction algorithms. Moreover, clustering 
methods can also serve as a means to evaluate the 
quality of software. 
A notable feature of clustering is the capability to 
function effectively in the presence of noise, 
without necessitating the predefinition of clusters. 
There are many clustering techniques used for SDP 
like K-means Clustering (Matloob, F, et al.,2021) 
Hierarchical Clustering, Density-based Clustering, 
Neural Network Clustering, Expectation 
Maximization Clustering, Spectral Clustering and 
Optimization Clustering. 
Various research studies have demonstrated that 
Clustering Software Defect Prediction models 
exhibit comparable predictive performance to 
Supervised Defect Prediction models. This suggests 
that clustering models for defect prediction may 
not be as challenging as previously believed and 
should be considered when there is limitation on 
labeled training data. Furthermore, scholars have 
noted that the attributes of a dataset substantially 
influence predictive accuracy, whether employing 
unsupervised or supervised models for defect 
detection in software. Therefore, a more thorough 
exploration of these dataset properties' relevance 
is warranted. Furthermore, investigating the 
interaction between the learning system and the 
dataset could prove beneficial, as it remains a 
question of which specific learning approach, 
whether supervised or unsupervised, excels under 
different circumstances. 
 
2. RELATED WORK 
This section presents an insight in recent 
investigations in software defect detection 
conducted by a variety of researchers. The 
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examination centers on research that has 
formulated a faultless prediction model for 
anticipating software glitches through the 
utilization of clustering, an unsupervised machine 
learning technique. 
In the research (Ni, C., Liu, W., Gu, Q., Chen, X., & 
Chen, D, 2017), they introduced a novel clustering 
technique designed to  group the modules. They 
presented the Hybrid Elitist Self-Adaptive Multi-
Population Social Mimic Optimization technique 
(ESAMP-SMO). Key attributes of ESAMP-SMO 
algorithm include self-adaptation, multi-
population management, elitism, crossover, and 
mutation. The research methodology began with 
an exploration of the maximum number of 
generations, followed by the generation of initial 
candidate solutions and the division of the 
population into sub-populations. Subsequently, a 
social mimic optimization process was applied to 
each sub-population, culminating in the merging of 
all sub-populations and the identification of a new 
global leader solution. After a careful examination, 
the cross and mutation operations were applied, 
leading to the final output solution. The evaluation 
of approach involved the use of various 
performance metrics, including Precision (P), 
accuracy (ACC), recall (R), sensitivity, F1-score, 
specificity, false negative rate (FNR), Fowlkes-
Mallows Index (FMI), false positive rate (FPR) and 
Youden's index (YI). These metrics were applied to 
three well-known NASA benchmark datasets, 
namely, CM1, KC1, and JM1. In order to gauge the 
effectiveness, they conducted a benchmark 
comparison with evolutionary-based clustering 
methods such as Crow Search Algo, Particle Swarm 
Optimization, Jaya Optimization Algorithm, Gray 
Wolf Optimization and Genetic Algorithm. The 
results of the performance comparison analysis 
unambiguously demonstrate the superior 
performance of our proposed clustering technique 
when compared to the other competing 
approaches. The research aimed to enhance the 
model's performance concerning dataset accuracy 
and precision when compared to prior studies. To 
achieve this goal, they employed K-means 
clustering to categorize class labels and 
subsequently applied classification models to 
specific features. Their analysis involved three ML 
classification models: Linear SVC (SVM), Gaussian 
NB (NB), and Random Forest (RF) with Stacking 
ensemble methodology, where NB served as the 

base model,  RF and SVM as member models. 
Particle Swarm Optimization(PSO) was used to 
optimize the ML models. They assessed model 
performance using accuracy, precision, F-measure, 
recall, confusion matrix and performance error 
metrics. The results showed that all optimized ML 
and ML models achieved the maximum potential, 
with SVM and optimized SVM models 
outperforming the rest with the highest accuracy 
rates of 99% and 99.80%, respectively. The 
accuracy scores for RF, Optimized RF, NB, 
Optimized NB, and ensemble approaches were  
98.70%, 99.50%,93.90%, 93.80%, 98.80%, and 
97.60%, respectively. 
Many defect-related features have been developed 
for SDP by researchers in order to increase 
prediction performance. However, the 
performance of defect prediction will be 
significantly diminished by feature redundancy 
(FR) and irrelevance brought on by the growing 
dimensions of data. Researchers have suggested a 
number of data dimensionality reduction 
techniques to address the issues. The two types of 
approaches that make up these techniques are 
feature selection and feature extraction. The two 
types of approaches both have advantages and 
disadvantages, though. In order to enhance the 
performance of SDP, they suggested a Hybrid 
Feature Dimensionality Reduction Approach 
(HFDRA) for SDP in study (Usman-Hamza, et al., 
2019). This approach combines the two various 
types of approaches. The two stages of the HFDRA 
technique are feature selection and feature 
extraction. In the feature selection stage, HFDRA 
first uses a clustering method to separate the 
original features into various feature subsets. Then, 
in the feature extraction stage, each feature 
subset's dimensionality is decreased using kernel 
principal component analysis (KPCA). The 
prediction model is then created using the 
reduced-dimensional data. They defined the 
correlation among features (FF-correlation) and 
the correlation between features and defect types 
(FC-correlation). 22 projects from AEEEM, 
SOFTLAB, MORP, and ReLink are used as 
experiment objects in the empirical investigation. 
In this study, they first compared their method 
with three state-of-the-art approaches and seven 
baseline methods named as ALL, IG, MIC, KPCA, 
CFS, FCBF and ReliefF. NB and SVM are two 
separate classifiers that they used in this paper's 
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experiment to develop a defect prediction model. 
Next, they examined the connection between FR 
and forecast accuracy. AUC, F1, and MCC three 
measures are also used to assess the success of four 
different prediction algorithms. On each project, 
the experimental outcome is also based on the 10-
fold cross-validation average value.  The results of 
the experiments demonstrate that their strategy 
outperforms cutting-edge data dimensionality 
reduction techniques for fault prediction. 
The majority of CPDP approaches base their defect 
prediction models on how closely two projects' 
feature spaces or data are related. The problem 
arises in case when the target project has a tiny 
amount of label data. Therefore, it is challenging to 
get acceptable prediction performance using these 
methods when the distribution between the source 
project and the target project is substantially 
different. This paper (Huda, S., Liu, K., Abdelrazek, 
et al., 2018) developed a CPDP approach based on 
semisupervised clustering, known as Tsbagging, to 
address this issue. The clustering stage and the 
ensemble stage make up the majority of tsbagging. 
The data from the source project were clustered 
using a semisupervised method (TSCluster), and 
various weights were then applied to the data in 
accordance with the clustering results. They 
employed bagging to train a number of classifiers 
and integrate them to forecast the defect in the 
ensemble stage, which was dependent on the 
weights provided in the clustering step. In this 
study, we analyze the effectiveness of defect 
prediction using the F1-measure, MCC, g-measure, 
and balance. The experimental results 
demonstrate that Tsbagging outperforms other 
SDP approaches in terms of performance. The 
primary goal of the study conducted in reference 
(Usman-Hamza, et al., 2019) was to evaluate the 
efficiency of integrating clustering techniques with 
feature selection methods as a strategy to address 
the software defect prediction challenge. The study 
examined seven preprocessed datasets from the 
National Aeronautics and Space Administration 
(NASA) utilizing a variety of clustering techniques, 
including K-MEANS, Density-Based (DB),  
Expectation Maximization (EM), Self-Organizing 
Maps (SOM), Farthest First, Neural Networks, 
Learning Vector Quantization (LVQ), and X-Means. 
To evaluate and compare a variety of feature 
selection techniques, the researchers conducted an 
analysis of software defect prediction using PSO, 

Cuckoo, Bat, and Grey Wolf Optimizer (GWO). Their 
framework comprises three key stages: Feature 
Selection, Clustering & Decision Making. The 
experimental setup was conducted in two 
dimensions. Initially, datasets were directly input 
into classifiers prior to the feature selection phase. 
In the second dimension, datasets underwent 
feature selection before being processed. The 
authors employed the WEKA platform and a 10-
fold cross-validation method to assess data and to 
compare outcomes. The performance of the 
developed model was evaluated based on 
sensitivity, accuracy, precision, and F-measures. 
The results highlighted the efficacy of the Farthest 
First clustering algorithm in software fault 
prediction, while Bat and Cuckoo algorithms 
demonstrated superiority compared to other 
metaheuristic approaches. In software defect 
datasets, the presence of redundant and irrelevant 
features can significantly impede the effectiveness 
of defect prediction models and increase 
computational complexity. To address this issue, 
(Alsawalqah, H, et al., 2020) introduced the ReliefF-
based clustering [RFC] algorithm, a feature 
selection (FS) method that identifies and 
eliminates redundant and irrelevant features. The 
RFC commences by employing symmetric 
uncertainty to compute feature correlations and 
subsequently leverages this data to group features 
into clusters, employing the k-medoids algorithm. 
Following this step, it proceeds to choose 
representative features from each cluster, 
culminating in the creation of the ultimate feature 
subset. RFC takes into account both feature 
correlations and relevance to the targeted class, 
effectively mitigating that issue of dimensionality 
and enhancing the performance of SDP. In their 
experiments, the authors compared the proposed 
RFC with traditional FS algorithms using nine 
datasets from the NASA for SDP. Evaluation metrics 
included the (AUC) area under the curve and F-
value. The experiments  clearly demonstrated the 
capability of RFC to significantly enhance SDP 
performance. 
In this research paper (Balogun, A., et al.,2019), 
they introduced a novel hybrid heterogeneous 
ensemble method designed for SDP. 
Heterogeneous ensembles are comprised of 
classifiers based on various techniques, each with 
its distinct pros and cons. The primary objective of 
this researched approach is to construct resilient 
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and expert heterogeneous machine learning 
classification models. This approach unfolds in 
three principal phases: Clustering and Data 
Segmentation: In the initial phase, they employed a 
clustering on the training dataset to partition into 
groups of instances that show some similarity. The 
determination of the optimal number of clusters in 
the final model hinges on the G-mean outcomes 
obtained during the training phase. To mitigate 
overfitting, they conducted the training using a 
two-fold cross-validation approach with four 
settings: 9, 7, 5 or 3 clusters. The optimal number 
of clusters that yields the highest G-mean value was 
selected for application in the final testing phase. 
Classifier Training: The second phase involved 
training various classifiers based on the groups 
generated in the 1st phase. Evaluation and 
Prediction of developed Model: Finally, in the 3rd 
phase, they assessed the performance of the 
developed models and employ them to predict 
instances not represented in the training data. The 
proposed approach comprises two versions: the 
first utilizes simple classifiers (k-Nearest 
Neighbour, Naïve Bayes, and Decision Tree), while 
the second employs ensemble classifiers (Adaptive 
Boosting, Bagging, Random Forest and XGBoost). 
To evaluate the effectiveness of approach, they 
conducted experiments on 21 publicly available 
benchmark datasets. Precision, recall, and G-mean 
served as the evaluation metrics. The outcome of 
their assessment illustrated the dominance of the 
ensemble variant when compared to other well-
established basic and ensemble classification 
methods. K-Means is a common and effective 
clustering technique. Since it can be confused by 
randomly chosen centroid positions, this method 
cannot produce optimum results. The central point 
algorithm was presented in (Annisa, R., Rosiyadi, 
D., & Riana, D, 2020) as a method for determining 
the K-Means algorithm's initial centroid value. The 
point center algorithm is able to count the number 
of clusters in addition to computing the initial 
centroid value. This approach pitted ten datasets 
against each other and relied on choosing variables 
X and Y to identify the cluster members. Software 
defect estimation datasets make up 9 of the 
certified datasets. The results of the suggested 
approach in the datasets Iris, PC2, PC4, MW1, and 
KC3 have decreased error results. Some datasets, 
like PC2, showed the greater Rand Index value. 
Another experimental finding indicated that, when 

compared to the straightforward K-Means 
approach, the suggested algorithm may reduce 
cluster errors in software defect modules by 
12.82%. Since our proposed method outperforms 
the straightforward K-Means method in terms of 
accuracy, it may be beneficial for clustering various 
types of data. The study (Ayon, S. I, 2019) 
experienced the effectiveness of clustering in the 
context of SDP. The researchers employed seven 
distinct clustering techniques: Farthest First, X-
Means, K-Means, Sequential Information 
Bottleneck (SIB), Density-based Clustering (DBC), 
Hierarchical Clustering (HC) and Expectation 
Maximization (EM). These techniques were applied 
to classify eight software datasets sourced from the 
NASA repository. The experimental results 
emphasized the well-established utility of 
clustering techniques as a classification approach, 
leading to robust predictive performance. By 
considering average accuracy Farthest First 
showed the highest performance at 86.16%, 
closely followed by HC at 85.50%. K-Means 
displayed a respectable accuracy of 72.33%. 
Conversely, EM achieved 33.52% accuracy, and X-
Means achieved 48.84%, indicating relatively 
weaker results. SIB and DBC techniques achieved 
moderate performance at 63% and 71.08%, 
respectively. Furthermore, a comparison with 
traditional classification methods such as NB, k-
Nearest Neighbor and DT revealed that certain 
clustering-based classification techniques, namely 
Farthest First and Hierarchical Clustering 
Techniques, outperformed some standard 
classification algorithms. Consequently, clustering-
based classification emerges as a viable alternative 
to traditional methods in SDP, providing robust 
predictive capabilities while eliminating the need 
for training predictive models and utilizing 
annotated datasets during model development. As 
a result, SDP models developed using clustering-
based classification techniques can be easily 
transferred across projects, as they do not require 
model training. This approach streamlines 
resource allocation during the software 
development process, enhancing efficiency and 
resource management.  
The research (Tang, S., Huang 2022) delved into 
the influence of feature selection approaches on 
software defect prediction through clustering 
techniques. They examined three distinct 
clustering techniques: Farthest First, K-Means, and 
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Density Based Clustering, alongside three 
techniques i.e. Chi-Square, Information Gain and  
Clustering Variation. These were applied to 
software defected datasets taken from the NASA 
repository. The Farthest First classification via 
clustering algorithm emerged as the top performer, 
not only achieving the highest average accuracy of 
78.57%  but also attaining the highest precision of 
0.792 and recall of 0.786% values. In the realm of 
software defect prediction via clustering methods, 
the Farthest First model led with an accuracy of 
78.57%, followed by K-Means at 75.71%, and 
Density based clustering at 73.77%, respectively. 
Additionally, their findings indicated that the 
application of feature selection methods enhanced 
the average accuracy of both K-Means and Farthest 
First clustering techniques. The most effective SDP 
model was the Farthest-First model, incorporating 
the Information Gain method, achieving an 
accuracy of 78.69%, a recall  of .788 and a precision 
of .804. This highlights that classification via 
clustering methods can yield competitive 
outcomes when compared to conventional 
classification approaches, with the added 
advantage of not necessitating training on labeled 
datasets, making them suitable for application on 
unlabeled datasets. In practical scenarios, SDP 
models often face the challenge of handling highly 
imbalanced datasets. This imbalance creates 
difficulties for classifiers in accurately identifying 
defective instances. One common strategy to tackle 
this issue involves using oversampling techniques, 
which aim to balance the distribution of faulty and 
non-faulty dataset instances by generating new 
instances classified as defective. However, 
traditional oversampling methods frequently 
generate synthetic instances lacking diversity and 
introducing unnecessary noise into the dataset.In 
response to this concern, a novel approach was 
introduced by researchers in a study referred to as 
(Tang, S., Huang, et al., 2022). Their proposed 
method, known as KMFOS(Cluster-based Over-
sampling with noise filtering), was specifically 
designed to address the imblalance datasets 
challenge. Initially, the KMFOS approach group the 
faulty instances in k clusters. It then creates new 
defective data records through interpolation 
between the instances belonging to every pair of 
clusters. This ensures that the newly generated 
defective instances are distributed diversely across 
the defective dataset. To further improve the 

quality of oversampled data, the researchers 
extended the cluster-based oversampling process 
by incorporating the CLNI (Closest List Noise 
Identification) technique to identify and filter out 
noisy dataset instances.To assess the effective 
performance of KMFOS, the researchers conducted 
a comprehensive series of experiments across 24 
projects. They compared KMFOS with various 
oversampling techniques, including SMOTE, 
BorderlineSMOTE, ADASYN, ROS (random 
oversampling), SMOTE + IPF, K-means SMOTE, 
SMOTE + ENN, and SMOTE + Tomek Links. 
Additionally, they evaluated KMFOS against other 
standard methods for addressing class imbalance, 
such as balance bagging classifier, Instance 
Hardness Threshold, RUS boost classifier and cost-
sensitive approaches. The results unequivocally 
demonstrated that KMFOS outperforms other 
oversampling methods and class-imbalance 
mitigation techniques in terms of achieving higher 
Recall and balance values. In the study presented in 
(Ayon, S. I, 2019), the authors introduced a multi-
step approach for feature selection and 
classification. Initially, they employed Genetic 
Algorithm (GA) to select relevant features from the 
dataset. Subsequently, they formed feature clusters 
using PSO. Following this feature preprocessing 
stage, the researchers trained their model using 
various Neural Network methods, including 
Recurrent Neural Network (RNN), Feedforward 
Neural Network (FNN), Deep Neural Network 
(DNN) and Artificial Neural Network (ANN). To 
evaluate the model's performance, they computed 
several evaluation metrics, including sensitivity, 
accuracy, specificity, negative prediction value, 
precision, F1 score, and Matthews correlation 
coefficient. To assess the proposed approach's 
effectiveness, the authors conducted experiments 
on five distinct datasets, namely: PC1, KC1, CM1, 
JM1, and KC2. To ensure robust evaluation, they 
implemented 10-fold cross-validation . 
Remarkably, results revealed that the DNN 
consistently achieved accuracy levels exceeding 
90% across all datasets. Additionally, the other 
three methods—FNN, RNN, and ANN—also 
demonstrated strong performance, yielding 
commendable accuracy results. 
An approach for software defect prediction based 
on clustering-based undersampling and ANN is 
presented in research (Zhang, S., Jiang, S., & Yan, Y. 
2023). First, a subset of the majority samples is 
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chosen using clustering-based under-sampling, 
and this subset is joined with the minority samples 
to create a balanced data set. Second, using the 
balanced data set produced, an ANN model is 
created and trained. Ten nodes in a single hidden 
layer made up the created ANN model. 
Additionally, softmax function is used which is the 
output layer's transfer function, while log-
sigmoidal was the transfer function of hidden layer. 
Adam is employed to instruct the ANN.  Adam is a 
stochastic objective function optimization that 
uses gradients. To determine the number of 
majority samples that produces the best 
performance metrics, a sensitivity analysis is also 
done. Accuracy, PF (Probability of False Alarm or 
FPR), PD (Probability of Detection or T PR), F1-
measure, ROC, and Balance are some of the 
performance metrics employed. The results 
demonstrate a high degree of prediction accuracy 
for the detection of defective modules while 
preserving the capability of defect-free module 
detection. Most defect prediction methodologies 
require a substantial amount of labeled data for 
effective training, typically on modules within the 
same project. Such approaches are commonly 
referred to as "within project defect prediction" 
(WPDP). However, WPDP models may encounter 
challenges when confronted with limited training 
data. To address this issue, researchers have 
introduced cross project defect prediction and 
unsupervised machine learning techniques. CPDP 
models, as opposed to WPDP, utilize training data 
sourced from different projects for the purpose of 
forecasting defect proneness in modules within a 
particular project. Nevertheless, CPDP's 
performance is notably sensitive to variations in 
data distribution across different projects. In 
(Xiaolong, X. U, et al., 2021) they proposed a novel 
approach known as Cluster Ensembles and 
Labeling (CEL) for unlabeled datasets defect 
prediction. Instead of performing clustering on a 
single dataset, CEL employs a methodology 
involving the generation of multiple data 
partitions. Cluster algorithms are subsequently 
applied to these partitions, and the results from 
these various clusters are then combined. To assess 
the effectiveness of CEL, a series of experiments 
were conducted using  fifteen(15) projects 
obtained from three(3) distinct data repositories, 
specifically , AEEEM, Relink, and PROMISE. The 
experimental outcomes reveal that CEL exhibits 

superior prediction performance compared to the 
exceptional unsupervised learning model CLA. 
Additionally, a comparative analysis was 
performed between CEL and several supervised 
learning models, including Decision Tree , Logistic 
Regression  and Random Forest  employing 
evaluation metrics like precision, recall, and F-
measure. In conclusion, the research findings 
consistently demonstrate that CEL outperforms 
the CLA model across a range of experimental 
datasets. The researchers in (Almayyan, W, 2021). 
introduced an innovative approach called Feature 
Selection using Clusters of Hybrid-data. Their 
primary objective was the minimization of the 
feature distributions dissimilarity in the context of 
CPDP (Cross Project Defect Prediction) between 
the source and target project datasets. The 
proposed method consists of two stages. Initially, it 
utilizes the DPC (Density-Based Clustering) to 
partition the real dataset into number of clusters. 
Subsequently, three distinct ranking strategies, 
namely Similarity of Feature Distributions (SFD), 
Local Density of Features (LDF), and Feature-Class 
Relevance (FCR), are proposed to select features 
from each cluster. These approaches do not aim to 
map features but rather offer guidance in selecting 
relevant software metrics within the context of 
CPDP.To evaluate the effectiveness of FeSCH, a 
series of experiments were conducted using the 
AEEEM dataset. These experiments included a 
comparative analysis with alternative methods and 
a thorough examination of its design choices. To 
assess FeSCH's performance across different 
classifiers, a comparison was carried out with three 
widely used classifiers: Random Forest, Logistic 
Regression and Naive Bayes. The conclusive 
findings demonstrate that FeSCH consistently 
outperforms three methods (ALL,WPDP and TCA+) 
in various scenarios, maintaining its superiority 
irrespective of the chosen classifiers. 
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