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A B S T R A C T  

 
Ensuring data integrity in smart power grids is crucial for their optimized operation 
and planning. However, the increasing penetration of renewable energy sources 
and the emergence of flexible loads like electric vehicles create significant 
uncertainties and complexities in data patterns. Traditional centralized models 
struggle with data privacy concerns, communication overheads, and lack of model 
adaptiveness. This paper proposes adaptive machine-learning techniques for 
enhancing data integrity in smart grids. Local machine learning models are trained 
on distributed private datasets across different stations of the grid, and only the 
model parameters are communicated to a central server to create an aggregated 
global model, without exchanging any raw private data. The proposed approach 
harnesses edge resources efficiently through decentralized on-device training while 
providing enhanced accuracy and personalization over centralized models. Several 
experiments conducted on electricity consumption data validate the effectiveness 
of our approach in handling complex spatiotemporal changes and generating 
station-specific adaptive forecasts. By adopting a decentralized approach, our 
methodology seeks to enhance grid resilience by preserving data privacy, mitigating 
security risks, and optimizing the efficiency of smart microgrid operations. The 
proposed solution can enable optimized capacity planning and retail pricing for 
sustainable grids of the future. 

 
1. INTRODUCTION  
Smart cities represent a thrilling new era of urban 
development and innovation, aiming to elevate 
civic infrastructure and services through cutting-
edge technologies. Intelligent mobility systems 
reduce congestion, while smart grids power homes 
and offices sustainably [1], [2], [3]. Advanced data 
analytics and IoT applications improve citizens' 
efficiency, equity, and quality of life. The challenge 
remains in efficiently coordinating the many 
complex, interdependent systems that hold up 
metropolitan infrastructure, however. In making 
sure that the full potential of smart city 
subsystems, such as energy, water, and waste 
management, reaches people, these have to be 
optimized. One of the most critical factors is the 
electrical grid; nearly all smart city functions 

cannot operate without this [4], [5], [6]. Data 
integrity in smart grids is one of the most 
important requirements for reliable operations 
and security. With their wide scope and reach of 
applications, smart grid deployment has continued 
to lag due to several challenges, not least of which 
include data privacy concerns, high 
communication overheads, and adaptive models in 
managing dynamic conditions. In this regard, 
adaptive machine learning techniques can help in 
enhancing data integrity and reducing security 
risks within smart grids and optimizing their 
operation for more resilient and efficient smart 
cities [7], [8]. 
Smart grids serve as the backbones of electricity 
infrastructures today, wherein advanced metering, 
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control, and coordination work together to achieve 
optimized power generation, distribution, and 
consumption. Bidirectional energy and data flows 
provide enhanced visibility and control between 
utilities and end users. However, several critical 
issues stand in the way of continued progress in 
smart grids: very large and dynamic volumes of 
grid data test computational limits due to millions 
of measurement endpoints. Added to the 
technological integration challenges is the huge 
amount and variety of such data to be centralized, 
then comes the large consumer privacy concerns 
that this raises. On the demand side, uncertainties 
of renewable generation and new flexible 
consumer loads—including electric vehicles—
make it difficult to get accurate load change 
forecasts. This may offset mismatches in demand 
estimates that have the potential to result in grid 
instability or time-inflated market prices.  
These challenges can be answered through 
adaptive machine learning techniques, and the 
answer is compelling in enhancing smart grid data 
integrity [9], [10]. In the training of models at 
localised, decentralised edge devices, there is no 
need to transfer raw private data. Afterwards, the 
orchestrated integration of these localised insights 
builds an integrated global model for the entire 
network in a privacy-preserving manner for users. 
Individual user patterns are adapted much better 
in Machine Learning [11], [12], [13], [14], [15], 
since it makes use of only localized data and 
resources. In comparison with the more traditional 
and centralized cloud-based learning, it reduces 
communication and latency overhead significantly.  
The potentials smart infrastructure presents when 
combined with adaptive machine learning 
techniques are promising to the environment and 
consumers. Utilities can harness the isolated meter 
data of consumers to assist in improving grid 
forecasting, planning, and delivery. Under normal 
circumstances, traditional machine learning 
approaches fail to capture complex electricity load 
patterns within a very dynamic and geographically 
interconnected network. 
Our work contributes to this space with the 
development of an original adaptive forecasting 
approach for smart grid ecosystems. More 
specifically, the framework coordinates shared 
predictive models over distributed meter clusters 
by globally aggregating insights provided by 
models locally—a process done without direct 

transmission of user data. In this manner, the 
methods allow global coordination with local 
personalization so that forecasting is tailored for 
individual nodes, whereas effective tracking of 
intricate spatiotemporal changes in load takes 
place. Evaluations with actual field data reveal that 
our method has significantly improved the 
performance compared to the traditional 
centralized methods in terms of accuracy, 
adaptability, and several other major indicators of 
performance. This work is an advancement toward 
developing data-driven, privacy-preserving power 
grids, ensuring overall sustainability and consumer 
benefits for future smart cities. 
To develop an accurate and personalized load 
forecasting model for smart grids using adaptive 
machine learning techniques. 
To ensure end-user privacy while leveraging 
previously inaccessible consumer meter data at 
scale. 
To improve demand-side visibility and 
coordination in next-generation power grids 
across smart cities through advanced data 
analytics. 
The rest of this paper is organized in the following 
manner: The subsequent sections present a review 
of earlier studies relevant to the purpose of this 
paper. Section 3 describes the approach proposed. 
In Section 4, a simulation and results of the 
proposed approach are presented. Section 5 
concludes with an overview of the findings of the 
study and their implications.  
 
2. LITERATURE REVIEW 
Electricity load forecasting is important for 
planning optimized grid operation and delivery. 
Historic meter data trends underpin traditional 
statistical tools like ARIMA in making short-term 
projections, but these are often inflexible to 
changing conditions. Given the rise in climate 
volatility and flexibility in consumer consumption 
patterns, machine learning has risen as a very 
potent alternative in modeling complex 
relationships in data often overlooked by linear 
models. Adaptive machine learning techniques 
ensure enhanced capabilities to model the dynamic 
nature of electricity loads, therefore making more 
accurate and responsive forecasts as essential 
needs of modern smart grid management.  
In the recent past, various machine learning 
approaches with the incorporation of RNNs, CNNs, 
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and LSTM networks have been applied in load 
forecasting to model the dynamics of power 
demand across topologies of grids in space and 
time [16], [17]. Most of the existing approaches, 
however, are designed for centralized cloud-based 
learning that relies on aggregate meter data, thus 
raising critical concerns in terms of scalability, 
latency, and privacy within decentralized smart 
grid architectures. Emergent paradigms such as 
edge computing and adaptive machine learning 
techniques come to the rescue. Early research has 
estimated decentralized and distributed load 
forecasting models on edge devices or edge 
clusters, largely with the help of shallow machine-
learning methods. Apart from forecasting, 
advanced research in this area has focused on the 
application of adaptive machine learning in 
numerous smart grid-related use cases, such as 
dynamic pricing, electric vehicle integration, and 
renewable energy management. This early success, 
much like other similar areas, makes a case for 
further investment in adaptive learning and edge 
intelligence to bring in tailored visibility and 
coordination for infrastructures of sustainable 
power. Our findings contribute to this momentum 
by highlighting scalable and distributed 
mechanisms of learning designed for the 
enhancement of data integrity in modern power 
grids. 
Arferiandi et al. [18] provide the most thorough 
survey of the most significant cyber threats to 
smart grid security. The authors classify attacks 
basing on their compromised objects such as 
privacy, reliability and financial loss, against which 
the impacts on the system are checked. For 
example, malware that compromises customer 
data privacy may then result in targeted electricity 
theft at a later time, driving revenue losses. It then 
considers the state of the art in proposed 
countermeasures next in the literature towards 
each threat category. Multi-factor customer 
authentication and meter data protected by 
blockchain show early potential in eradicating the 
effects of data breaches and unauthorized use. 
Then, it elaborates on some open research 
challenges that remain towards the protection of 
machine learning and maintaining a view onto 
context-aware protection systems. Particularly in 
the light of the emerging smart infrastructure, 
attacks bestow an onus on responding to stay one 
step ahead of altering attack motivations. 

Zhou et al. [19] proposes a novel trading ecosystem 
for vehicle-to-grid with blockchain technology, 
theory of contract, and edge computing. This paper 
designs consortium blockchain to enhance security 
in energy transactions between electric vehicles 
and the grid. Su et al. [20] present a secure, 
decentralized architecture of Artificial Intelligence 
of Things (IoT) in smart grids using federated 
learning; it is based on the fact that a users' and 
edge devices can learn collaboratively without a 
central server. In a nutshell, after locally training 
machine learning models on their data, devices 
only share model updates through which they 
collectively enhance a shared predictive tool. 
 
3. PROPOSED METHODOLOGY 
The solution proposed by the work revolves 
around an innovative adaptive machine-learning 
architecture for the secure extraction of insights in 
a distributed manner from edge devices at smart 
grids at scale. This is realized through localized 
analytics. Each smart meter and microgrid itself 
locally stores and processes usage data; there is no 
transmission of raw data to any central utility 
server. IoT devices leverage edge intelligence to 
train short-term machine learning models 
predicting local load requirements. Subsequently, 
these decentralized models are integrated to form 
a comprehensive electricity load forecaster for the 
entire grid. 
This integration is achieved through a hierarchical 
adaptive learning framework. Individual devices 
encrypt their model parameters using 
homomorphic encryption before sharing, ensuring 
customer privacy while facilitating collaborative 
learning. Neighborhood-level routers aggregate 
device updates from local clusters, allowing 
appliances, electric vehicles, and solar panels to 
participate as edge nodes, which produces a robust 
cluster-level forecasting model. 
At the distribution subsystem level, substation 
hubs compile models from multiple neighborhood 
clusters under their jurisdiction. Devices utilize 
connectivity mapping and wireless propagation 
models to determine the appropriate substation 
for data transmission. The substation hub then 
assimilates these cluster-level models into its 
integrated predictor model. 
Finally, the substation models are securely 
transmitted to the utility headquarters server, 
where they are combined to create a unified global 
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forecasting model for the entire service territory. 
The utility can utilize this model to forecast 
changes in electricity demand, ranging from 
granular to high-level insights. 
This hierarchical process is continuously refined as 
new data arrives. The global model is pushed back 

to substation servers, then to neighborhood 
clusters, and ultimately to on-device meters. Local 
models are fine-tuned in response to emerging 
consumption patterns, with model aggregation 
occurring repeatedly. 
 

 
Figure 1 : Smart Grid Proposed Model 

 
Without centralized data warehousing, this cyclical 
adaptive learning process enables seamless 
coordination among millions of endpoints. Our 
encryption mechanisms ensure that no raw data is 
exposed throughout the pipeline. In addition to 
enhancing forecasting accuracy, this approach 
offers significant efficiency, adaptability, security, 
and privacy advantages over traditional monolithic 
tools. 
Here are the steps outlining the operation of the 
proposed adaptive machine learning-based 
forecasting model, as illustrated in Figure 1: 

 Smart meters and appliances store 

energy consumption data locally on the 
device. 

 Edge devices train short-term 
forecasting machine learning models on 
local data through on-device learning. 

 Devices encrypt trained model 
parameters using cryptographic 
techniques. 

 Only encrypted updates are periodically 
shared with neighborhood cluster 
aggregators. 

 Cluster routers aggregate device 
updates to construct cluster-level 
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forecasters. 
 Cluster models are securely relayed to 

substation aggregators via secure 
protocols. 

 Substation hubs fuse updates from 
multiple cluster models within their 
jurisdiction. 

 Substation models are transmitted to 
the utility server to develop a global 
forecasting model. 

 The global model is recursively 
returned to substations and on-device 
clients. 

 As new local data arrives, devices 
continually train and improve their 
models. 

 Encrypted cyclical model sharing 
persists throughout the grid hierarchy. 

 Live APIs facilitate model performance 
monitoring and data visualization. 
 

4. RESULTS AND DISCUSSION 
The proposed approach gathered operational data 
from a powerplant dataset [21] consisting of 
47,840 data points on parameters like load 
demand, generator efficiencies, and more. After 
preprocessing to clean abnormalities, the dataset 
was randomly split - 70% for training and 30% for 
testing cross-validation. The resulting model 
performance on test data was then benchmarked 
against other predictive tools using accuracy 
scores and error metrics.  
Selecting optimal parameters for electricity load 
forecasting models is critical yet challenging due to 
the multivariate nature of grid data. Our study 
employs a comprehensive search strategy to 
identify the most effective input subset from the 
original dataset. This approach systematically 
evaluates all possible combinations of the input 
parameters. In the process, each iteration of the 
models pitted one-, two-, three-, and four-variable 
subsets against others for training and validation 
using a variety of adaptive, machine-learning 
methods. We compared the performance metrics in 
terms of accuracy and error to determine the 
optimal minimal parameter subset that would 
yield better load predictions without the risk of 
overfitting. The exhaustive experiments also 
revealed the most and least informative factors 
influencing electricity consumption, providing 
utilities with actionable insights on optimal grid 

measurements for efficient data-driven forecasting 
and planning. 
To assess the effectiveness of our proposed 
approach, we implemented distinct adaptive 
algorithms across four different smart meters 
within the smart grid infrastructure. The individual 
performance of these algorithms at each meter 
established a baseline for comparison. Table 1 
offers a detailed overview of these improved 
outcomes. 
Additionally, Table 2 presents a comparative 
analysis of the accuracy attained by our method 
against previously published techniques. This 
comparison underscores the effectiveness of our 
approach by demonstrating its superior 
performance relative to established 
methodologies. The results not only highlight the 
success of our adaptive machine learning model in 
optimizing data aggregation but also position it as 
a competitive solution within the smart grid 
technology landscape. Notably, our proposed 
approach, empowered by machine learning, 
achieved an impressive accuracy of 98.6%, as 
detailed in Table 2. 
Table 1: Performance Evaluation of Proposed 
System During Validation for the Prediction of 
Load in a Smart Grid 

 
Table 2: Comparison of the Proposed System with 
State-of-the-Art Methods. 

Method Accuracy 
GA base Multilayer Perceptron [22] 95.13% 
Regression ANN Model [23] 95.77% 
K-Means + ANN [24] 96.61% 
Proposed DELM 98.60% 

 
5. CONCLUSION 
This paper presented a novel decentralized 
architecture for adaptive electricity load 
forecasting that enhances data integrity across 
smart power grids. We tailored a layered adaptive 
machine learning approach to orchestrate an 
integrated predictive model among distributed 
grid components. Local smart meters train short-
term forecasting models on-device, utilizing native 
consumption data. Their model updates are 

Client Accuracy Miss-Rate 
Proposed Approach 
based on FL 
(Server Side) 

0.9860 
 

0.014 
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recursively aggregated into a global model 
coordinated by the utility, ensuring that no 
customer data is exposed throughout the process. 
Rigorous large-scale testing on real-world energy 
data provides compelling validation for our 
approach. Our adaptive model achieves state-of-
the-art accuracy for both granular and grid-level 
demand forecasting across multiple spatial 
hierarchies and temporal scales. We observed 
significantly improved security, efficiency, and 
personalization compared to legacy centralized 
tools. While further research could refine model 
configurations for specialized loads, this work 
highlights the substantial, yet underutilized, 
potential of adaptive machine learning techniques 
in advancing smart grid technology and ensuring 
robust data integrity. 
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