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ABSTRACT: 

Covid-19 pandemic has seriously affected the mankind with colossal loss of life around the world. 

There is a critical requirement for timely and reliable detection of Corona virus patients to give 

better and early treatment to prevent the spread of the infection. With that being said, current 

researches have revealed some critical benefits of utilizing complete blood count tests for early 

detection of COVID-19 positive individuals. In this research we employed different machine 

learning algorithms using full blood count for the prediction of COVID-19. These algorithms 

include: “K Nearest Neighbor, Radial Basis Function, Naive Bayes, kStar, PART, Random Forest, 

Decision Tree, OneR, Support Vector Machine and Multi-Layer Perceptron”. Further, “Accuracy, 

Recall, Precision, and F-Measure” are the performance evaluation measures that are utilized in this 

study. 
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INTRODUCTION 

In the last months of 2019, a new infectious disease, COVID-19, was reported, which quickly 

spread all over the world. This fatal disease is caused by the virus SARS-CoV-2. In order to contain 

this disease many efforts have been made everywhere for its initial screening as well as timely 

treatment. “Reverse Transcription Polymerase Chain Reaction (RT-PCR)” is a test that is 

developed for the diagnosis of covid-19 disease with DNA sequencing and identification [1, 2]. 

Despite its popularity, this test has some flaws. It is time consuming, costly, specific laboratory 

apparatus is needed and it has approximately false-negative rate of 20% [3]. Moreover, a shortage 

has always been observed of RT-PCR test kits worldwide. Just like RT-PCR, IgM/IgG antibodies 

tests have their own disadvantages with sensitivity and specificity being as low as 18.8% and 

77.8% respectively in initial screening of COVID-19 [4]. Although CT scans and chest X-rays 

images based on Machine learning [5] have shown positive results, however these tests are not 

much useful due to high dosage of radiation. Recently some studies [6-11] have been conducted, 

which revealed that COVID-19 patients' blood features alter immensely so recognizing and 

working with these parameters can help in early detection of the virus. Machine learning is very 

resourceful in observing and separating different patterns in the attributes of blood examinations. 

The machine learning framework designed with blood examinations samples for covid-19 initial 

screening is speedy, easy to handle and cheap in comparison with high priced and slow tests. A 

model like this will have a huge influence in countries that cannot afford expensive tests like RT-

PCR etc. and lack appropriate equipment and specialized laboratories. 

RELATED WORK 

Machine learning algorithms are being focused by the many researchers to recognize the hidden 

patterns as well as to mine the valuable information from raw data. Some of the research fields in 

which machine learning played a vital role, include: sentiment analysis [12-18], rainfall prediction 

[19-20], and network intrusion detection [21-22], software defect prediction [23-32], health and 

medical data mining [33-40]. Moreover, a lot of researchers have focused on the use of machine 

learning techniques to detect covid-19 patients by exploring the patterns in CBC test results, some 

of the related studies are discussed here. Researches in [41] developed a machine learning model 
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using the complete blood test samples. This model, named as ER-CoV, and used for early detection 

of covid-19 infected individuals. In the proposed technique, three algorithms are employed, 

including: “Support Vector Machine, SMOTE Boost and Ensemble”. This model provided 70.25% 

sensitivity, 85.98% specificity and 86.78% AUC. For covid-19 detection a LASSO Logistic 

Regression Model was developed by [42] by using blood test results. The dataset was divided into 

a ratio of 80:20 and contained 110 samples. 15 important attributes were chosen by implying m 

RMR algorithm that were further reduced to 7. This framework showed 98% sensitivity and 91% 

specificity. Researchers in [43] employed the techniques including: “Decision Tree, Extremely 

Randomized Trees, K Nearest Neighbors, Logistic Regression, Naive Bayes, Random Forest and 

Support Vector Machine” for the prediction of covid-19 disease using blood samples. Random 

Forest algorithm was tuned to improve the results. These algorithms accomplished an accuracy of 

82%–86% and a sensitivity of 92%–95%. Researchers in [44] developed a framework to diagnose 

covid-19 patients with the help of machine learning techniques using blood samples from 

emergency care unit. “Neural Networks, Gradient Boosting Trees, Random Forest, Logistic 

Regression and Support Vector Machine” were employed for detection of this virus. Support 

Vector Machine outperformed with 68% sensitivity, 85% specificity and 85% AUC. Researchers 

of [45] designed a machine learning based model using blood test results to detect covid-19. This 

framework employed following algorithms: Bayesian Networks, Random Forest, Support Vector 

Machines, Multilayer Perceptron and Naive Bayes. The dataset contained 5644 test samples which 

were acquired from Albert Einstein Hospital in Brazil. Class imbalance problem was resolved and 

feature selection was done. The model showed positive results with 96.8% sensitivity, 93.6% 

specificity and 95.159% accuracy. Researchers in [46] came up with four frameworks utilizing 

machine learning algorithms, including Artificial Neural Networks, Random Forest, and Lasso-

elastic-net Regularized Generalized Linear Network and Linear Regression. These models were 

used to predict covid-19 infected patients on the basis of blood samples. These frameworks 

accomplished an AUC of 80–86%, sensitivity of 43–65%, specificity of 81–91% and accuracy of 

81–87% with 14 chosen attributes. 
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MATERIALS And METHODS 

The dataset used in this research was made available publicly by Kaggle. The full dataset contains 

record of 5644 patients collected from “Albert Einstein Israelita Hospital located in Sao Paulo, 

Brazil” [47]. We have taken only those records which have values in CBC parameters. These 

patient records were obtained from March 28, 2020 till April 3, 2020. The attributes that were 

chosen to work with in this study include: “red blood cells (RBC), lymphocytes, mean corpuscular 

hemoglobin concentration (MCHC), leukocytes, basophils, hematocrit, hemoglobin, platelets, 

mean platelet volume (MPV), mean corpuscular hemoglobin (MCH), eosinophils, mean 

corpuscular volume (MCV), monocytes and red blood cell distribution width (RBCDW)”. Pre-

processing activities including cleaning and normalization are performed before classification (Fig 

1). The dataset chosen for this research has a dependent attribute which contains either the value 

of ‘Y’ or ‘N’. ‘Y’ depicts that patient is covid-19 positive and ‘N’ shows that the patient is covid-

19 negative. The dependent attribute is targeted attribute which we are going to predict/classify 

and independent attribute is the one which is utilized to predict the dependent attribute. The data 

was split into 70% training and 30% test data. For classification following algorithms are used: “K 

Nearest Neighbor, Radial Basis Function, Naive Bayes, kStar, PART, Random Forest, Decision 

tree, OneR, Support Vector Machine and Multi-Layer Perceptron”. The tool used for this 

experimentation is Weka”, which was developed at the University of Waikato, New Zealand for 

data mining tasks.  
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Fig: 1 Prediction of Covid-19 Patients using CBC Results 

 

RESULTS AND DISCUSSIONS 

In this section we will see how the selected machine learning algorithms performed in predicting 

the covid-19 disease. Accuracy evaluation is an important element and an ultimate goal of 

performance analysis [12-40], [48-50]. The used classification algorithms are analyzed by using 

the measures, such as: “precision, recall, f measure and accuracy”. All of these measures are 

extracted by the parameters of confusion matrix. The parameters reflected by the confusion matrix 

are discussed below [21-25]: 

 

“True Positive (TP): Instances which are actually positive and also classified as positive”.  

“False Positive (FP): Instances which are actually negative but classified as positive”.  
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“False Negative (FN): Instances which are actually positive but classified as negative”.  

“True Negative (TN):  Instances which are actually negative and also classified as negative”.  

 

The calculation formulas of used performance measures are given below [21-28]:  

 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

 

“Recall is defined as the ratio of True Positive (TP) instances with respect to the total number of 

instances that are actually positive” [21-28]. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

 

“F-measure provides the average of Precision & Recall” [21-28].  

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 2 

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)
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“Accuracy reflects that how much the prediction is accurate” [21-28].  

  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

 

 

All these measures of performance are provided by Weka tool. The training results for each class 

Y and N are given in Table 1 and testing results for both the classes are provided in Table 2. In 

case of class imbalance problem, a question mark ‘?’ symbol is displayed as these accuracy 

measures are sensitive to this issue. Highest accuracy achieved during training is 100 % by three 

algorithms KNN, kStar, and RF. In testing, the maximum accuracy achieved is 88% by OneR. 

 
Table 1:  Training Results 

Classifier Class Precision Recall F-measure Accuracy 

NB 
Y 0.447 0.667 0.535 

84.2482 
N 0.943 0.870 0.905 

MLP 
Y 0.960 0.842 0.897 

97.3747 
N 0.976 0.994 0.985 

RBF 
Y 0.500 0.018 0.034 

86.3962 
N 0.866 0.997 0.927 

SVM 
Y ? 0.000 ? 

86.3962 
N 0.864 1.000 0.927 

KNN 
Y 1.000 1.000 1.000 

100 
N 1.000 1.000 1.000 

kStar 
Y 1.000 1.000 1.000 

100 
N 1.000 1.000 1.000 

OneR 

 

Y 0.630 0.298 0.405 
88.0668 

N 0.898 0.972 0.934 

PART 
Y 0.757 0.930 0.835 

94.9881 
N 0.989 0.953 0.970 

DT 
Y 0.959 0.825 0.887 

97.136 
N 0.973 0.994 0.984 

RF 
Y 1.000 1.000 1.000 

100 
N 1.000 1.000 1.000 
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Table 2: Testing Results 

Classifier Class Precision Recall F-measure Accuracy 

NB 
Y 0.410 0.667 0.508 

82.6816 
N 0.943 0.852 0.895 

MLP 
Y 0.444 0.333 0.381 

85.4749 
N 0.901 0.935 0.918 

RBF 
Y 0.000 0.000 0.000 

82. 1229 
N 0.860 0.948 0.902 

SVM 
Y ? 0.000 ? 

86. 5922 
N 0.866 1.000 0.928 

KNN 
Y 0.261 0.250 0.255 

80. 4469 
N 0.885 0.890 0.887 

kStar 
Y 0.355 0.458 0.400 81. 5642 

 N 0.912 0.871 0.891 

OneR 
Y 0.636 0.292 0.400 88. 2682 

 N 0.899 0.974 0.935 

PART 
Y 0.375 0.625 0.469 

 81. 0056 
N 0.935 0.839 0.884 

DT 
Y 0.444 0.500 0.471 

84. 9162 
N 0.921 0.903 0.912 

RF 
Y 0.538 0.292 0.378 

87. 1508 
N 0.898 0.961 0.928 

 

 

CONCLUSION: 

Initial screening of covid-19 disease is crucial for timely treatment and for preventing the disease 

from spreading. Blood test samples have proven to be effective for early diagnosis of this disease. 

In this study we used several machine learning techniques like “K Nearest Neighbor, Radial Basis 

Function, Naive Bayes, kStar, PART, Random Forest, Decision Tree, OneR, Support Vector 

Machine and Multi-Layer Perceptron” to predict covid-19 with the help of complete blood count 

test results. Measures which were used to evaluate the performance, include: “Accuracy, Recall, 

Precision, F-Measure and ROC”. 
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