
International Journal of Technology, Innovation and Management (IJTIM), Vol.1, Special Issue.1, 2021                            79 

 

 
Online at: https://doi.org/10.54489/ijtim.v1i2.24                                                                                                        Published by GAF-TIM, gaftim.com 

 

TREATMENT RESPONSE PREDICTION IN HEPATITIS C PATIENTS 

USING MACHINE LEARNING TECHNIQUES 

 

Ashfaq Ali Kashif1, Birra Bakhtawar1, Asma Akhtar1, Samia Akhtar1, Nauman Aziz2, 

Muhammad Sheraz Javeid3 

 

1 Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan 

(ashfaq.ali00@gmail.com, birra.bakhtawar@gmail.com, asmaakhtarjanjua@gmail.com, 

samiaakhtar9898@gmail.com) 
2 Department of Computer Science, Superior University, Lahore, Pakistan, na.pitafi@gmail.com 

3 School of Computer Science, National College of Business Administration & Economics, Lahore, 

Pakistan, sherazjaveid@gmail.com 

 

ABSTRACT: 

The proper prognosis of treatment response is crucial in any medical therapy to reduce the effects 

of the disease and of the medication as well. The mortality rate due to hepatitis c virus (HCV) is 

high in Pakistan as well as all over the world. During the treatment of any disease, prediction of 

treatment response against any particular medicine is difficult. This paper focuses on predicting 

the treatment response of a drug: “L-ornithine L-Aspartate (LOLA)” in hepatitis c patients. We 

have used various machine learning techniques for the prediction of treatment response, including: 

“K Nearest Neighbor, kStar, Naive Bayes, Random Forest, Radial Basis Function, PART, 

Decision Tree, OneR, Support Vector Machine and Multi-Layer Perceptron”. Performance 

measures used to analyze the performance of used machine learning techniques include, 

“Accuracy, Recall, Precision, and F-Measure”.    
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INTRODUCTION 

Hepatitis is a dangerous and transmissible disease [1-4]. The virus of this disease can spread from 

one infected person to another healthy human being. This disease has already infected almost 17 

million people in all over the world and the numbers are getting increased day by day [2-6]. The 

virus of hepatitis c needs to be treated as early as possible to control and reduce the effects of the 

disease. A proper and complete medical therapy is needed in order to bring down the effects of 

this disease. However, not one medical therapy is good for all the patients. Same medicine may 

have different effects on different people due to other known or hidden medical reasons of the 

patients [5-10]. This paper explores the importance of machine learning techniques to predict the 

treatment response of a drug: “L-ornithine L-Aspartate (LOLA)” in hepatitis c patients. Various 

machine learning techniques are used in this study for the prediction of treatment response, 

including: “K Nearest Neighbor, kStar, Naive Bayes, Random Forest, Radial Basis Function, 

PART, Decision Tree, OneR, Support Vector Machine and Multi-Layer Perceptron”. Performance 

of used machine learning techniques is analyzed and evaluated by various measures, including: 

“Accuracy, Recall, Precision, and F-Measure”.           

RELATED WORK 

Many researchers have used machine learning and data mining techniques in order to predict the 

treatment response. Researchers in [11] has built a hybrid framework to examine the similarity of 

drugs response using advanced K-means clustering. Researchers in [12] predict the response of 

Clozapine; a drug used for the treatment of psychiatric disease. They used a machine learning 

approach to predict the response of drug. In [13], a machine learning supported framework built 

by the team of researchers on post-marketing dataset for predicting the Anti-PD-1 treatment 

response. In [2], treatment response prediction is performed using the Artificial Neural Network 

and Decision Tree. In [14], researchers used Decision Tree (DT) to predict the early diagnosis of 

hepatitis C in the diabetic patients using the routine laboratory tests. In [15], researchers used 

different machine learning techniques to predict the drugs toxicity and its side effects, these side 

effects weaken the quality of life, which needs to be addressed on priority bases. In [16], 

researchers presented a machine learning based prediction for HIV medication resistance with a 

set of mutant features. The proposed algorithm first identify the protein structure then classify it 
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based on sparse representation using Artificial Neural Network, Support Vector Machine and 

Regression. In [17], the researchers explored that the deep learning techniques played a vital role 

in cancer patients for identification the drugs response. The researchers critically examined the 

cancer cell in order to predict the drug response on them. Researchers in [18] uses Bayesian 

Network for predicting the esophageal disease which is an adverse effect, present in the disease of 

liver cirrhosis. 

 

MATERIALS AND METHODS 

This study explores the effectiveness of machine learning techniques in the prediction of treatment 

response in hepatitis c patients. Machine learning and data mining techniques have been widely 

and effectively used by many researchers in various domains and fields including: 

Sentiment/Polarity analysis [19-25], Rainfall/Weather Prediction [26-27], and Network Intrusion 

Detection/Network Security [28-29], Software Defect Prediction [30-38], Medical and Health data 

mining [39-47]. Machine learning techniques included in this study for the prediction of treatment 

response are: “K Nearest Neighbor, kStar, Naive Bayes, Random Forest, Radial Basis Function, 

PART, Decision Tree, OneR, Support Vector Machine and Multi-Layer Perceptron”. The machine 

learning techniques are used on the patient’s dataset collected from a hospital in city of Lahore, 

Pakistan. The dataset consists of various attributes regarding the medical information of the 

patient. The attribute which is predicted on the basis of medical information is the response, which 

consists of two categorical values: Respondent or Not Respondent. This attribute reflects that the 

particular patient is showing response against LOLA therapy or not. The used dataset is pre-

processed before the classification. The pre-processing activities include: cleaning and 

normalization (Fig 1).   
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Fig 2 Treatment Response Prediction using Machine Learning Techniques 

 

RESULTS AND DISCUSSIONS 

Evaluating the performance of used machine learning techniques is a crucial stage where we have 

to compare the accuracy measures of used algorithms in order to select the best one for future use 

[48-50]. Performance of used machine learning techniques is analyzed and evaluated by various 

measures, such as: “Accuracy, Recall, Precision, and F-Measure”. The parameters used in the 

formulas of performance measures came from the confusion matrix (Fig 2), which is the ultimate 

result of classification/prediction. The Parameters used in the confusion matrix are: TP, FN, TN 

and FP [30-38].     

The formulas of the TP, FN, TN and FP has given below. 

 

Fig 2 Confusion Matrix 
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                                              Precision = 
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
  

 

                               Recall = 
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
  

  

F-Measures = 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙∗ 2

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
  

  

                                               Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (4) 

 

 

The Weka tool is used to conduct the experiments. All of the used performance measures are 

provided by the WEKA tool.  Table 1 reflects the results on training dataset with all of the used 

classification algorithms.  

 

Table 1: Results with Training Dataset 

 

Classifier Class Precision Recall F-Measure 

NB 
Respondent 0.893 0.895 0.894 

Not Respondent 0.622 0.618 0.62 

MLP 
Respondent 0.914 0.953 0.933 

Not Respondent 0.803 0.681 0.737 

RBF 
Respondent 0.878 0.922 0.9 

Not Respondent 0.661 0.542 0.595 

SVM 
Respondent 0.89 0.922 0.906 

Not Respondent 0.68 0.59 0.632 

KNN 
Respondent 0.963 0.901 0.931 

Not Respondent 0.712 0.875 0.785 

K* 
Respondent 0.924 0.944 0.934 

Not Respondent 0.782 0.722 0.751 

OneR 
Respondent 0.892 0.911 0.901 

Not Respondent 0.654 0.604 0.628 

PART 
Respondent 0.931 0.913 0.922 

Not Respondent 0.708 0.757 0.732 

DT 
Respondent 0.692 0.625 0.657 

Not Respondent 0.898 0.922 0.91 

RF 
Respondent 0.931 0.936 0.933 

Not Respondent 0.766 0.75 0.758 

 

Table 2 shows the results on testing dataset. It can be seen that the accuracy measures are different 
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on both the datasets.  

 

Table 2: Results with Testing Dataset 

 

Classifier Class Precision Recall F-Measure 

NB 
Respondent 0.885 0.865 0.875 

Not Respondent 0.552 0.597 0.574 

MLP 
Respondent 0.873 0.865 0.869 

Not Respondent 0.531 0.548 0.54 

RBF 
Respondent 0.882 0.91 0.896 

Not Respondent 0.636 0.565 0.598 

SVM 
Respondent 0.873 0.932 0.902 

Not Respondent 0.681 0.516 0.587 

KNN 
Respondent 0.9 0.811 0.853 

Not Respondent 0.5 0.677 0.575 

K* 
Respondent 0.898 0.874 0.886 

Not Respondent 0.588 0.645 0.615 

OneR 
Respondent 0.888 0.932 0.91 

Not Respondent 0.706 0.581 0.637 

PART 
Respondent 0.9 0.851 0.875 

Not Respondent 0.554 0.661 0.603 

DT 
Respondent 0.889 0.937 0.912 

Not Respondent 0.72 0.581 0.643 

RF 
Respondent 0.895 0.883 0.889 

Not Respondent 0.6 0.629 0.614 

 

Accuracy of the training dataset and testing dataset is reflected in Table 3. The accuracy in the 

training dataset is highest in KNN, K* and Random Forest. On the other hand, Decision Tree 

shows the highest accuracy in the test dataset. 

 

Table 3: Accuracy Comparison  

 

Classifier Training Accuracy Test Accuracy 

NB 83.4598 80.6338 

MLP 89.3778 79.5775 

RBF 83.915 83.4507 

SVM 84.9772 84.1549 

KNN 89.5296 (Highest) 78.169 

K* 89.5296 (Highest) 82.3944 

OneR 84.3703 85.5634 

PART 87.8604 80.9859 

DT 85.736 85.9155 (Highest) 

RF 89.5296 (Highest) 82.7465 
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CONCLUSION: 

This paper presented a comparative analysis of various machine learning techniques on the 

prediction of treatment response in hepatitis c patients. The machine learning techniques used in 

this study include: “K Nearest Neighbor, kStar, Naive Bayes, Random Forest, Radial Basis 

Function, PART, Decision Tree, OneR, Support Vector Machine and Multi-Layer Perceptron”. 

The performance of these algorithms is measures by different evaluation measures such as “F-

measures, Precision, Accuracy and Recall”. It is observed that in the accuracy measure, training 

data, KNN, K* and RF performed well where as in test data DT performed well.   
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