Rainfall Prediction using Big Data Analytics: A Systematic Literature Review

Authors

  • Mahwish Anwer Cheema National College of Business Administration & Economics
  • Madeeha Saqib Imam Abdulrahman Bin Faisal University
  • Sardar Zafar Iqbal Imam Abdulrahman Bin Faisal University

Keywords:

Rainfall prediction, Big Data Analytics, SLR

Abstract

With major ramifications for agriculture, water resource management, and disaster planning, rainfall prediction is an essential component of weather forecasting. The use of big data analytics techniques has become more commonplace in recent years as a means of improving rainfall prediction models' accuracy and dependability. The goal of this systematic literature review is to present a thorough summary of the state of the art in the field of big data analytics-based rainfall prediction research. The first section of this paper provides a thorough examination of the basic ideas and procedures used in rainfall prediction models. It emphasises how crucial it is to incorporate data from a variety of sources into predictive models, such as social media, meteorological, and remote sensing data. This complete overview of the state-of-the-art in big data analytics-based rainfall prediction is provided by this systematic literature review. It highlights the need for multidisciplinary collaboration between meteorologists, data scientists, and domain specialists to further develop the subject of rainfall prediction and its applications. It also identifies gaps in the current research and recommends prospective directions for future studies.

Author Biographies

  • Madeeha Saqib, Imam Abdulrahman Bin Faisal University

    Department of Computer Information, Department of Computer Information Systems, College of Computer Science and Information Technology

  • Sardar Zafar Iqbal, Imam Abdulrahman Bin Faisal University

    Department of Computer Information, Department of Computer Information Systems, College of Computer Science and Information Technology

References

C. P. Shabariram, K. E. Kannammal, and T. Manojpraphakar, “Rainfall analysis and rainstorm prediction using MapReduce Framework,” 2016 Int. Conf. Comput. Commun. Informatics, ICCCI 2016, pp. 7–10, 2016, doi: 10.1109/ICCCI.2016.7479954.

M. Shatnawi, M. B. Yassein, and I. Jalabneh, “The Use of Big Data Analytics in Medical Images: A Survey,” 2020 11th Int. Conf. Inf. Commun. Syst. ICICS 2020, pp. 294–298, 2020, doi: 10.1109/ICICS49469.2020.239514.

X. Li, Y. Zhang, Y. Li, K. Yu, and Y. Du, “Study of E-business applications based on big data analysis in modern hospital health management,” Inf. Syst. E-bus. Manag., no. 0123456789, 2021, doi: 10.1007/s10257-021-00520-9.

A. Molinari and G. Nollo, “The quality concerns in health care Big Data,” 20th IEEE Mediterr. Electrotech. Conf. MELECON 2020 - Proc., pp. 302–305, 2020, doi: 10.1109/MELECON48756.2020.9140534.

R. Hou, Y. Q. Kong, B. Cai, and H. Liu, “Unstructured big data sanalysis algorithm and simulation of Internet of Things based on machine learning,” Neural Comput. Appl., vol. 32, no. 10, pp. 5399–5407, 2020, doi: 10.1007/s00521-019-04682-z.

K. Rajendra Prasad, M. Mohammed, L. V. Narasimha Prasad, and D. K. Anguraj, “An efficient sampling-based visualization technique for big data clustering with crisp partitions,” Distrib. Parallel Databases, no. 0123456789, 2021, doi: 10.1007/s10619-021-07324-3.

S. Aftab, M. Ahmad, N. Hameed, M. S. Bashir, I. Ali, and Z. Nawaz, “Rainfall prediction using data mining techniques: A systematic literature review,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 5, pp. 143–150, 2018, doi: 10.14569/IJACSA.2018.090518.

P. M. Maçaira, A. M. Tavares Thomé, F. L. Cyrino Oliveira, and A. L. Carvalho Ferrer, “Time series analysis with explanatory variables: A systematic literature review,” Environ. Model. Softw., vol. 107, no. June, pp. 199–209, 2018, doi: 10.1016/j.envsoft.2018.06.004.

Y. Sakurai, Y. Matsubara, and C. Faloutsos, “Mining and Forecasting of Big Time-series Data: Part 1A - Similarity search , pattern discovery and summarization,” Proc. 2015 ACM SIGMOD Int. Conf. Manag. Data - SIGMOD ’15, pp. 919–922, 2015, [Online]. Available: http://dl.acm.org/citation.cfm?doid=2723372.2731081.

G. D’souza, E. C. Barrett, and C. H. Power, Satellite rainfall estimation techniques using visible and infrared imagery, vol. 4, no. 2. 1990.

P. Singh, “Rainfall and financial forecasting using fuzzy time series and neural networks based model,” Int. J. Mach. Learn. Cybern., vol. 9, no. 3, pp. 491–506, 2018, doi: 10.1007/s13042-016-0548-5.

S. Chatterjee, B. Datta, and N. Dey, “HYBRID NEURAL NETWORK BASED RAINFALL PREDICTION SUPPORTED BY,” 2018, doi: 10.14311/NNW.2018.28.027.

A. DDubey, “Artificial Neural Network Models for Rainfall Prediction in Pondicherry,” Int. J. Comput. Appl., vol. 120, no. 3, pp. 30–35, 2015, doi: 10.5120/21210-3910.

A. Mosavi, P. Ozturk, and K. W. Chau, “Flood prediction using machine learning models: Literature review,” Water (Switzerland), vol. 10, no. 11, pp. 1–40, 2018, doi: 10.3390/w10111536.

S. Bahri, N. Zoghlami, M. Abed, and J. M. R. S. Tavares, “BIG DATA for Healthcare: A Survey,” IEEE Access, vol. 7, pp. 7397–7408, 2019, doi: 10.1109/ACCESS.2018.2889180.

A. Dikshit, R. Sarkar, B. Pradhan, S. Segoni, and A. M. Alamri, “Rainfall induced landslide studies in indian himalayan region: A critical review,” Appl. Sci., vol. 10, no. 7, pp. 1–24, 2020, doi: 10.3390/app10072466.

M. Hassan, E. A. Ahmed, and B. Benmokrane, “Punching Shear Strength Prediction of Frp-Reinforced Concrete Flat Slabs,” 6th Int. Conf. Adv. Compos. Mater. Bridg. Struct., no. May, 2012.

N. Singhal and M. Ashraf, “Performance enhancement of classification scheme in data mining using hybrid algorithm,” Int. Conf. Comput. Commun. Autom. ICCCA 2015, pp. 138–141, 2015, doi: 10.1109/CCAA.2015.7148360.

M. Yu, C. Yang, and Y. Li, “Big data in natural disaster management: A review,” Geosci., vol. 8, no. 5, 2018, doi: 10.3390/geosciences8050165.

S. K. Mohapatra, A. Upadhyay, and C. Gola, “Rainfall prediction based on 100 years of meteorological data,” 2017 Int. Conf. Comput. Commun. Technol. Smart Nation, IC3TSN 2017, vol. 2017-Octob, pp. 162–166, 2018, doi: 10.1109/IC3TSN.2017.8284469.

A. K. Sahai, M. K. Soman, and V. Satyan, “All India summer monsoon rainfall prediction using an artificial neural network,” Clim. Dyn., vol. 16, no. 4, pp. 291–302, 2000, doi: 10.1007/s003820050328.

K. Agrawal, “Modelling and prediction of rainfall using artificial neural network and ARIMA techniques,” J. Ind. Geophys. Union, vol. 10, no. 2, pp. 141–151, 2006.

K. R. B and G. A, “Rainfall Prediction Using Data Mining Techniques - A Survey,” pp. 23–30, 2013, doi: 10.5121/csit.2013.3903.

N. Sultana and M. M. Hasan, “Forecasting Temperature in the Coastal Area of Bay of Bengal-An Application of Box-Jenkins Seasonal ARIMA Model,” J. Civ. Environ. Res., vol. 7, no. 8, pp. 149–160, 2015.

M. A. H. Z. Choudhury, S. Banu, and M. A. Islam, “Forecasting dengue incidence in Dhaka, Bangladesh: A time series analysis,” Dengue Bull., vol. 32, pp. 29–37, 2008.

W. Fan, C. Chong, G. Xiaoling, Y. Hua, and W. Juyun, “Prediction of Crop Yield Using Big Data,” Proc. - 2015 8th Int. Symp. Comput. Intell. Des. Isc. 2015, vol. 1, pp. 255–260, 2016, doi: 10.1109/ISCID.2015.191.

J. Abbot and J. Marohasy, “Input selection and optimisation for monthly rainfall forecasting in queensland, australia, using artificial neural networks,” Atmos. Res., vol. 138, pp. 166–178, 2014, doi: 10.1016/j.atmosres.2013.11.002.

P. Zhang, Y. Jia, L. Zhang, J. Gao, and H. Leung, “A deep belief network based precipitation forecast approach using multiple environmental factors,” Intell. Data Anal., vol. 22, no. 4, pp. 843–866, 2018, doi: 10.3233/IDA-173427.

G. de Freitas Viscondi and S. N. Alves-Souza, “A Systematic Literature Review on big data for solar photovoltaic electricity generation forecasting,” Sustain. Energy Technol. Assessments, vol. 31, no. November 2018, pp. 54–63, 2019, doi: 10.1016/j.seta.2018.11.008.

O. Manoj and J. P. Ananth, “MapReduce and Optimized Deep Network for Rainfall Prediction in Agriculture,” Comput. J., vol. 63, no. 6, pp. 900–912, 2020, doi: 10.1093/comjnl/bxz164.

Y. K. Joshi, U. Chawla, and S. Shukla, “Rainfall prediction using data visualisation techniques,” Proc. Conflu. 2020 - 10th Int. Conf. Cloud Comput. Data Sci. Eng., pp. 327–331, 2020, doi: 10.1109/Confluence47617.2020.9057928.

B. Thai, L. Minh, T. Le, K. T. Bui, and V. Minh, “Development of advanced arti fi cial intelligence models for daily rainfall prediction,” Atmos. Res., vol. 237, no. August 2019, p. 104845, 2020, doi: 10.1016/j.atmosres.2020.104845.

P. Zhang, Y. Jia, J. Gao, W. Song, and H. Leung, “Short-Term Rainfall Forecasting Using Multi-Layer Perceptron,” IEEE Trans. Big Data, vol. 6, no. 1, pp. 93–106, 2018, doi: 10.1109/tbdata.2018.2871151.

M. A. Rahman, L. Yunsheng, and N. Sultana, “Analysis and prediction of rainfall trends over Bangladesh using Mann–Kendall,

Downloads

Published

2023-12-22

How to Cite

Rainfall Prediction using Big Data Analytics: A Systematic Literature Review. (2023). International Journal of Computations, Information and Manufacturing (IJCIM), 3(2), 28-36. https://journals.gaftim.com/index.php/ijcim/article/view/284

Similar Articles

11-20 of 20

You may also start an advanced similarity search for this article.